File size: 7,715 Bytes
1ade150 a6833f1 1ade150 669f762 85a624f 669f762 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 669f762 85a624f 669f762 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 669f762 85a624f 1ade150 85a624f 1ade150 85a624f 669f762 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 669f762 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f 1ade150 85a624f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
base_model:
- meta-llama/Llama-3.2-3B-Instruct
- codellama/CodeLlama-7b-Instruct-hf
- codellama/CodeLlama-13b-Instruct-hf
library_name: peft
pipeline_tag: text-generation
tags:
- lora
- transformers
- configuration-management
- secrets-management
- devops
- multi-cloud
- gguf
- anysecret
license: mit
language:
- en
---
# AnySecret Assistant - Multi-Model Collection
A specialized AI assistant collection for AnySecret configuration management, available in multiple sizes and formats optimized for different use cases and deployment scenarios.
## π Available Models
| Model | Base Model | Parameters | Format | Best For | Memory |
|-------|------------|------------|--------|----------|--------|
| **3B** | Llama-3.2-3B-Instruct | 3B | PyTorch/GGUF | Fast responses, edge deployment | 4-6GB |
| **7B** | CodeLlama-7B-Instruct | 7B | PyTorch/GGUF | Balanced performance, code focus | 8-12GB |
| **13B** | CodeLlama-13B-Instruct | 13B | PyTorch/GGUF | Highest quality, complex queries | 16-24GB |
### Model Variants
#### PyTorch Models (LoRA Adapters)
- `anysecret-io/anysecret-assistant/3B/` - Llama-3.2-3B base
- `anysecret-io/anysecret-assistant/7B/` - CodeLlama-7B base
- `anysecret-io/anysecret-assistant/13B/` - CodeLlama-13B base
#### GGUF Models (Quantized)
- `anysecret-io/anysecret-assistant/3B-GGUF/` - Q4_K_M, Q8_0 formats
- `anysecret-io/anysecret-assistant/7B-GGUF/` - Q4_K_M, Q8_0 formats
- `anysecret-io/anysecret-assistant/13B-GGUF/` - Q4_K_M, Q8_0 formats
## π― Model Description
These models are fine-tuned specifically to assist with AnySecret configuration management across AWS, GCP, Azure, and Kubernetes environments. Each model can help with CLI commands, configuration setup, CI/CD integration, and Python SDK usage.
- **Developed by:** anysecret-io
- **Model type:** Causal Language Model (LoRA Adapters + GGUF)
- **Language(s):** English
- **License:** MIT
- **Specialized for:** Multi-cloud secrets and configuration management
## π¦ Quick Start
### Option 1: Using Ollama (Recommended for GGUF)
```bash
# 7B model (balanced performance)
ollama pull anysecret-io/anysecret-assistant/7B-GGUF
ollama run anysecret-io/anysecret-assistant/7B-GGUF
# 13B model (best quality)
ollama pull anysecret-io/anysecret-assistant/13B-GGUF
ollama run anysecret-io/anysecret-assistant/13B-GGUF
```
### Option 2: Using Transformers (PyTorch)
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Choose your model size (3B/7B/13B)
model_size = "7B" # or "3B", "13B"
base_models = {
"3B": "meta-llama/Llama-3.2-3B-Instruct",
"7B": "codellama/CodeLlama-7b-Instruct-hf",
"13B": "codellama/CodeLlama-13b-Instruct-hf"
}
base_model_name = base_models[model_size]
adapter_path = f"anysecret-io/anysecret-assistant/{model_size}"
# Load model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, adapter_path)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Generate response
def ask_anysecret(question):
prompt = f"### Instruction:\n{question}\n\n### Response:\n"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### Response:\n")[-1].strip()
# Example usage
print(ask_anysecret("How do I configure AnySecret for AWS?"))
```
### Option 3: Using llama.cpp (GGUF)
```bash
# Download GGUF model
wget https://huggingface.co/anysecret-io/anysecret-assistant/resolve/main/7B-GGUF/anysecret-7b-q4_k_m.gguf
# Run with llama.cpp
./llama-server -m anysecret-7b-q4_k_m.gguf --port 8080
```
## π― Use Cases
### Direct Use
All models are designed to provide expert assistance with:
- **AnySecret CLI** - Commands, usage patterns, troubleshooting
- **Multi-cloud Configuration** - AWS Secrets Manager, GCP Secret Manager, Azure Key Vault
- **Kubernetes Integration** - Secrets, ConfigMaps, operators
- **CI/CD Pipelines** - GitHub Actions, Jenkins, GitLab CI
- **Python SDK** - Implementation guidance, best practices
- **Security Patterns** - Secret rotation, access controls, compliance
### Example Queries
```
"How do I set up AnySecret with AWS Secrets Manager?"
"Show me how to use anysecret in a GitHub Actions workflow"
"How do I rotate secrets across multiple cloud providers?"
"What's the difference between storing secrets vs parameters?"
"How do I configure AnySecret for a Kubernetes deployment?"
```
## ποΈ Training Details
### Training Data
Models were trained on **150+ curated examples** across 7 categories:
- **CLI Commands** (25 examples) - Command usage and patterns
- **AWS Configuration** (25 examples) - Secrets Manager integration
- **GCP Configuration** (25 examples) - Secret Manager setup
- **Azure Configuration** (25 examples) - Key Vault integration
- **Kubernetes** (25 examples) - Secrets and ConfigMaps
- **CI/CD Integration** (15 examples) - Pipeline workflows
- **Python Integration** (10 examples) - SDK usage patterns
### Training Configuration
#### Hyperparameters
- **LoRA Rank:** 16
- **LoRA Alpha:** 32
- **Learning Rate:** 2e-4
- **Batch Size:** 1 (with gradient accumulation)
- **Epochs:** 2-3
- **Precision:** fp16 mixed precision with 4-bit quantization
#### Target Modules
- **Llama-3.2 (3B):** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **CodeLlama (7B/13B):** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
## π§ Model Selection Guide
### Choose 3B if you need:
- β
Fast inference (< 1 second)
- β
Low memory usage (4-6GB)
- β
Edge deployment
- β
Basic AnySecret queries
### Choose 7B if you need:
- β
Balanced performance/speed
- β
Better code understanding
- β
Moderate memory (8-12GB)
- β
Complex configuration queries
### Choose 13B if you need:
- β
Highest quality responses
- β
Complex multi-step guidance
- β
Advanced troubleshooting
- β
Production deployments
## π Deployment Options
### Local Development
- **GGUF + Ollama:** Easiest setup, good performance
- **PyTorch + GPU:** Best quality, requires CUDA
### Production Deployment
- **Docker + llama.cpp:** Scalable, CPU/GPU support
- **Kubernetes:** Auto-scaling, load balancing
- **Cloud APIs:** Serverless, pay-per-use
### Memory Requirements
| Model | GGUF Q4_K_M | GGUF Q8_0 | PyTorch FP16 |
|-------|-------------|-----------|--------------|
| 3B | 2.3GB | 3.2GB | 6GB |
| 7B | 4.1GB | 7.2GB | 14GB |
| 13B | 7.8GB | 13.8GB | 26GB |
## π Model Sources
- **Repository:** https://github.com/anysecret-io/anysecret-lib
- **Documentation:** https://docs.anysecret.io
- **Training Code:** https://github.com/anysecret-io/anysecret-llm
- **Website:** https://anysecret.io
## π Framework Versions
- **PEFT:** 0.17.1+
- **Transformers:** 4.35.0+
- **PyTorch:** 2.0.0+
- **llama.cpp:** Latest
- **Ollama:** 0.1.0+
## π Performance Benchmarks
| Model | Tokens/sec | Quality Score | Memory (GGUF Q4) |
|-------|------------|---------------|------------------|
| 3B | ~45 | 7.2/10 | 2.3GB |
| 7B | ~25 | 8.5/10 | 4.1GB |
| 13B | ~15 | 9.1/10 | 7.8GB |
*Benchmarks run on RTX 3090 with GGUF Q4_K_M quantization*
## βοΈ License
MIT License - See individual model folders for specific license details.
---
For support, visit our [GitHub Issues](https://github.com/anysecret-io/anysecret-lib/issues) or [Documentation](https://docs.anysecret.io). |