PyTDC-Vesalius
Collection
PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models
•
5 items
•
Updated
Single-cell variational inference (scVI) is a powerful tool for the probabilistic analysis of single-cell transcriptomics data. It uses deep generative models to address technical noise and batch effects, providing a robust framework for various downstream analysis tasks. To load the pre-trained model, use the Files and Versions tab files.
from tdc.multi_pred.anndata_dataset import DataLoader
from tdc import tdc_hf_interface
adata = DataLoader("scvi_test_dataset",
"./data",
dataset_names=["scvi_test_dataset"],
no_convert=True).adata
scvi = tdc_hf_interface("scVI")
model = scvi.load()
output = model(adata)
@inproceedings{
velez-arce2024signals,
title={Signals in the Cells: Multimodal and Contextualized Machine Learning Foundations for Therapeutics},
author={Alejandro Velez-Arce and Xiang Lin and Kexin Huang and Michelle M Li and Wenhao Gao and Bradley Pentelute and Tianfan Fu and Manolis Kellis and Marinka Zitnik},
booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities},
year={2024},
url={https://openreview.net/forum?id=kL8dlYp6IM}
}