rag-topic-model / README.md
apostolosfilippas's picture
Add BERTopic model
42fbd7e verified
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# rag-topic-model
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("apostolosfilippas/rag-topic-model")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 5
* Number of training documents: 168
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | for - klarna - to - my - the | 15 | -1_for_klarna_to_my |
| 0 | klarna - my - declined - for - ve | 51 | 0_klarna_my_declined_for |
| 1 | payment - to - the - my - for | 50 | 1_payment_to_the_my |
| 2 | my - klarna - and - details - account | 28 | 2_my_klarna_and_details |
| 3 | store - the - it - refund - back | 24 | 3_store_the_it_refund |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: auto
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.6.1
* Sentence-transformers: 3.4.1
* Transformers: 4.50.1
* Numba: 0.61.2
* Plotly: 6.0.1
* Python: 3.11.7