Update with backwards compatible tokenizer format

#1
canary-1b-v2/AudioEncoder.mlmodelc/analytics/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3df05476ab972d87a55ea881a224e4d090b124d644d0afa04ddef5906ae1d88f
3
- size 243
 
 
 
 
canary-1b-v2/AudioEncoder.mlmodelc/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:959e9e5bb91b90ad6fb590563750c3d67dad5ff176540db9b074f51a10628181
3
- size 374
 
 
 
 
canary-1b-v2/AudioEncoder.mlmodelc/metadata.json DELETED
@@ -1,87 +0,0 @@
1
- [
2
- {
3
- "metadataOutputVersion" : "3.0",
4
- "storagePrecision" : "Mixed (Float16, Palettized (4 bits), Sparse)",
5
- "outputSchema" : [
6
- {
7
- "hasShapeFlexibility" : "0",
8
- "isOptional" : "0",
9
- "dataType" : "Float16",
10
- "formattedType" : "MultiArray (Float16 1 × 16385 × 1 × 188)",
11
- "shortDescription" : "",
12
- "shape" : "[1, 16385, 1, 188]",
13
- "name" : "ctc_head_raw_output",
14
- "type" : "MultiArray"
15
- }
16
- ],
17
- "modelParameters" : [
18
-
19
- ],
20
- "specificationVersion" : 8,
21
- "mlProgramOperationTypeHistogram" : {
22
- "Pad" : 24,
23
- "Ios17.mul" : 121,
24
- "Split" : 24,
25
- "Ios17.transpose" : 1,
26
- "Ios17.sub" : 1,
27
- "Ios16.constexprLutToDense" : 266,
28
- "Ios17.conv" : 560,
29
- "Ios17.matmul" : 72,
30
- "Ios16.sigmoid" : 24,
31
- "Ios17.add" : 433,
32
- "Ios17.sliceByIndex" : 48,
33
- "Ios16.constexprSparseToDense" : 265,
34
- "Ios16.relu" : 3,
35
- "Ios17.batchNorm" : 120,
36
- "Ios16.softmax" : 24,
37
- "Ios17.reshape" : 193,
38
- "Ios17.layerNorm" : 120,
39
- "Ios16.silu" : 72
40
- },
41
- "computePrecision" : "Mixed (Float16, Int32)",
42
- "isUpdatable" : "0",
43
- "stateSchema" : [
44
-
45
- ],
46
- "availability" : {
47
- "macOS" : "14.0",
48
- "tvOS" : "17.0",
49
- "visionOS" : "1.0",
50
- "watchOS" : "10.0",
51
- "iOS" : "17.0",
52
- "macCatalyst" : "17.0"
53
- },
54
- "modelType" : {
55
- "name" : "MLModelType_mlProgram"
56
- },
57
- "userDefinedMetadata" : {
58
- "com.github.apple.coremltools.source_dialect" : "TorchScript",
59
- "com.github.apple.coremltools.source" : "torch==2.5.0",
60
- "com.github.apple.coremltools.version" : "8.3.0"
61
- },
62
- "inputSchema" : [
63
- {
64
- "hasShapeFlexibility" : "0",
65
- "isOptional" : "0",
66
- "dataType" : "Float16",
67
- "formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
68
- "shortDescription" : "",
69
- "shape" : "[1, 1, 1501, 128]",
70
- "name" : "melspectrogram_features",
71
- "type" : "MultiArray"
72
- },
73
- {
74
- "hasShapeFlexibility" : "0",
75
- "isOptional" : "0",
76
- "dataType" : "Float16",
77
- "formattedType" : "MultiArray (Float16 1 × 1 × 1 × 1)",
78
- "shortDescription" : "",
79
- "shape" : "[1, 1, 1, 1]",
80
- "name" : "input_1",
81
- "type" : "MultiArray"
82
- }
83
- ],
84
- "generatedClassName" : "AudioEncoder_mixedBitPalettized_4_bit_4_bit",
85
- "method" : "predict"
86
- }
87
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
canary-1b-v2/AudioEncoder.mlmodelc/model.mil DELETED
The diff for this file is too large to render. See raw diff
 
canary-1b-v2/AudioEncoder.mlmodelc/weights/weight.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:58d90cec4986979af3e035dd8cfe289fc816236324a5af9caf1e8782a635b532
3
- size 413235010
 
 
 
 
canary-1b-v2/MelSpectrogram.mlmodelc/analytics/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:18a67d3ece5958dea8f020020a16d72c2d6763103e5a671a2641444167b1c38d
3
- size 243
 
 
 
 
canary-1b-v2/MelSpectrogram.mlmodelc/coremldata.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:319a6328b0dd0cade7f4249ed7bb68b50aa5ffde93e968fb796cf0f5ad735c9c
3
- size 331
 
 
 
 
canary-1b-v2/MelSpectrogram.mlmodelc/metadata.json DELETED
@@ -1,77 +0,0 @@
1
- [
2
- {
3
- "metadataOutputVersion" : "3.0",
4
- "storagePrecision" : "Float32",
5
- "outputSchema" : [
6
- {
7
- "hasShapeFlexibility" : "0",
8
- "isOptional" : "0",
9
- "dataType" : "Float16",
10
- "formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
11
- "shortDescription" : "",
12
- "shape" : "[1, 1, 1501, 128]",
13
- "name" : "melspectrogram_features",
14
- "type" : "MultiArray"
15
- }
16
- ],
17
- "modelParameters" : [
18
-
19
- ],
20
- "specificationVersion" : 8,
21
- "mlProgramOperationTypeHistogram" : {
22
- "Identity" : 1,
23
- "Ios17.mul" : 2,
24
- "Ios17.sqrt" : 1,
25
- "Ios17.square" : 3,
26
- "Ios17.transpose" : 1,
27
- "Ios17.sub" : 2,
28
- "Ios17.matmul" : 1,
29
- "Ios17.conv" : 2,
30
- "Ios17.log" : 1,
31
- "Ios17.sliceByIndex" : 2,
32
- "Ios17.add" : 3,
33
- "Ios16.reduceMean" : 2,
34
- "Ios17.realDiv" : 1,
35
- "Ios17.expandDims" : 4,
36
- "Ios17.squeeze" : 2,
37
- "Ios17.reshape" : 2,
38
- "Ios17.cast" : 2,
39
- "Pad" : 2
40
- },
41
- "computePrecision" : "Mixed (Float16, Float32, Int32)",
42
- "isUpdatable" : "0",
43
- "stateSchema" : [
44
-
45
- ],
46
- "availability" : {
47
- "macOS" : "14.0",
48
- "tvOS" : "17.0",
49
- "visionOS" : "1.0",
50
- "watchOS" : "10.0",
51
- "iOS" : "17.0",
52
- "macCatalyst" : "17.0"
53
- },
54
- "modelType" : {
55
- "name" : "MLModelType_mlProgram"
56
- },
57
- "userDefinedMetadata" : {
58
- "com.github.apple.coremltools.source_dialect" : "TorchScript",
59
- "com.github.apple.coremltools.source" : "torch==2.5.0",
60
- "com.github.apple.coremltools.version" : "8.3.0"
61
- },
62
- "inputSchema" : [
63
- {
64
- "hasShapeFlexibility" : "0",
65
- "isOptional" : "0",
66
- "dataType" : "Float16",
67
- "formattedType" : "MultiArray (Float16 240000)",
68
- "shortDescription" : "",
69
- "shape" : "[240000]",
70
- "name" : "audio",
71
- "type" : "MultiArray"
72
- }
73
- ],
74
- "generatedClassName" : "MelSpectrogram",
75
- "method" : "predict"
76
- }
77
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
canary-1b-v2/MelSpectrogram.mlmodelc/model.mil DELETED
@@ -1,86 +0,0 @@
1
- program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3404.16.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
- {
4
- func main<ios17>(tensor<fp16, [240000]> audio) {
5
- tensor<string, []> cast_0_dtype_0 = const()[name = tensor<string, []>("cast_0_dtype_0"), val = tensor<string, []>("fp32")];
6
- tensor<fp32, [128, 257]> mel_filters = const()[name = tensor<string, []>("mel_filters"), val = tensor<fp32, [128, 257]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
7
- tensor<int32, [1]> var_8_begin_0 = const()[name = tensor<string, []>("op_8_begin_0"), val = tensor<int32, [1]>([1])];
8
- tensor<int32, [1]> var_8_end_0 = const()[name = tensor<string, []>("op_8_end_0"), val = tensor<int32, [1]>([240000])];
9
- tensor<bool, [1]> var_8_end_mask_0 = const()[name = tensor<string, []>("op_8_end_mask_0"), val = tensor<bool, [1]>([true])];
10
- tensor<fp32, [240000]> cast_0 = cast(dtype = cast_0_dtype_0, x = audio)[name = tensor<string, []>("cast_9")];
11
- tensor<fp32, [239999]> var_8 = slice_by_index(begin = var_8_begin_0, end = var_8_end_0, end_mask = var_8_end_mask_0, x = cast_0)[name = tensor<string, []>("op_8")];
12
- tensor<int32, [1]> var_13_begin_0 = const()[name = tensor<string, []>("op_13_begin_0"), val = tensor<int32, [1]>([0])];
13
- tensor<int32, [1]> var_13_end_0 = const()[name = tensor<string, []>("op_13_end_0"), val = tensor<int32, [1]>([239999])];
14
- tensor<bool, [1]> var_13_end_mask_0 = const()[name = tensor<string, []>("op_13_end_mask_0"), val = tensor<bool, [1]>([false])];
15
- tensor<fp32, [239999]> var_13 = slice_by_index(begin = var_13_begin_0, end = var_13_end_0, end_mask = var_13_end_mask_0, x = cast_0)[name = tensor<string, []>("op_13")];
16
- tensor<fp32, []> var_14 = const()[name = tensor<string, []>("op_14"), val = tensor<fp32, []>(0x1.f0a3d8p-1)];
17
- tensor<fp32, [239999]> var_15 = mul(x = var_13, y = var_14)[name = tensor<string, []>("op_15")];
18
- tensor<fp32, [239999]> input_1 = sub(x = var_8, y = var_15)[name = tensor<string, []>("input_1")];
19
- tensor<fp32, []> const_0 = const()[name = tensor<string, []>("const_0"), val = tensor<fp32, []>(0x0p+0)];
20
- tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([1, 0])];
21
- tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("constant")];
22
- tensor<fp32, [240000]> input_3 = pad(constant_val = const_0, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1)[name = tensor<string, []>("input_3")];
23
- tensor<int32, [3]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [3]>([1, 1, 240000])];
24
- tensor<fp32, [1, 1, 240000]> input_5 = reshape(shape = var_30, x = input_3)[name = tensor<string, []>("input_5")];
25
- tensor<fp32, []> const_2 = const()[name = tensor<string, []>("const_2"), val = tensor<fp32, []>(0x0p+0)];
26
- tensor<int32, [6]> input_7_pad_0 = const()[name = tensor<string, []>("input_7_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 256, 256])];
27
- tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("reflect")];
28
- tensor<fp32, [1, 1, 240512]> input_7 = pad(constant_val = const_2, mode = input_7_mode_0, pad = input_7_pad_0, x = input_5)[name = tensor<string, []>("input_7")];
29
- tensor<int32, [1]> var_42 = const()[name = tensor<string, []>("op_42"), val = tensor<int32, [1]>([240512])];
30
- tensor<fp32, [240512]> input = reshape(shape = var_42, x = input_7)[name = tensor<string, []>("input")];
31
- tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
32
- tensor<fp32, [1, 240512]> expand_dims_0 = expand_dims(axes = expand_dims_0_axes_0, x = input)[name = tensor<string, []>("expand_dims_0")];
33
- tensor<fp32, [257, 1, 512]> expand_dims_1 = const()[name = tensor<string, []>("expand_dims_1"), val = tensor<fp32, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(131712)))];
34
- tensor<fp32, [257, 1, 512]> expand_dims_2 = const()[name = tensor<string, []>("expand_dims_2"), val = tensor<fp32, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(658112)))];
35
- tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
36
- tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
37
- tensor<fp32, [1, 1, 240512]> expand_dims_4 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0)[name = tensor<string, []>("expand_dims_4")];
38
- tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
39
- tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
40
- tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
41
- tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
42
- tensor<fp32, [1, 257, 1501]> conv_0 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1, x = expand_dims_4)[name = tensor<string, []>("conv_0")];
43
- tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
44
- tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
45
- tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
46
- tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
47
- tensor<fp32, [1, 257, 1501]> conv_1 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2, x = expand_dims_4)[name = tensor<string, []>("conv_1")];
48
- tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
49
- tensor<fp32, [257, 1501]> squeeze_0 = squeeze(axes = squeeze_0_axes_0, x = conv_0)[name = tensor<string, []>("squeeze_0")];
50
- tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
51
- tensor<fp32, [257, 1501]> squeeze_1 = squeeze(axes = squeeze_1_axes_0, x = conv_1)[name = tensor<string, []>("squeeze_1")];
52
- tensor<fp32, [257, 1501]> square_1 = square(x = squeeze_0)[name = tensor<string, []>("square_1")];
53
- tensor<fp32, [257, 1501]> square_2 = square(x = squeeze_1)[name = tensor<string, []>("square_2")];
54
- tensor<fp32, [257, 1501]> add_1 = add(x = square_1, y = square_2)[name = tensor<string, []>("add_1")];
55
- tensor<fp32, [257, 1501]> magnitudes = identity(x = add_1)[name = tensor<string, []>("magnitudes")];
56
- tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
57
- tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
58
- tensor<fp32, [128, 1501]> mel_spec_1 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters, y = magnitudes)[name = tensor<string, []>("mel_spec_1")];
59
- tensor<fp32, []> var_56 = const()[name = tensor<string, []>("op_56"), val = tensor<fp32, []>(0x1p-24)];
60
- tensor<fp32, [128, 1501]> mel_spec_3 = add(x = mel_spec_1, y = var_56)[name = tensor<string, []>("mel_spec_3")];
61
- tensor<fp32, []> mel_spec_5_epsilon_0 = const()[name = tensor<string, []>("mel_spec_5_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
62
- tensor<fp32, [128, 1501]> mel_spec_5 = log(epsilon = mel_spec_5_epsilon_0, x = mel_spec_3)[name = tensor<string, []>("mel_spec_5")];
63
- tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
64
- tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
65
- tensor<fp32, [128, 1]> per_feature_mean = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_5)[name = tensor<string, []>("per_feature_mean")];
66
- tensor<fp32, [128, 1501]> sub_0 = sub(x = mel_spec_5, y = per_feature_mean)[name = tensor<string, []>("sub_0")];
67
- tensor<fp32, [128, 1501]> square_0 = square(x = sub_0)[name = tensor<string, []>("square_0")];
68
- tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
69
- tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
70
- tensor<fp32, [128, 1]> reduce_mean_1 = reduce_mean(axes = reduce_mean_1_axes_0, keep_dims = reduce_mean_1_keep_dims_0, x = square_0)[name = tensor<string, []>("reduce_mean_1")];
71
- tensor<fp32, []> real_div_0 = const()[name = tensor<string, []>("real_div_0"), val = tensor<fp32, []>(0x1.002bbp+0)];
72
- tensor<fp32, [128, 1]> mul_0 = mul(x = reduce_mean_1, y = real_div_0)[name = tensor<string, []>("mul_0")];
73
- tensor<fp32, [128, 1]> sqrt_0 = sqrt(x = mul_0)[name = tensor<string, []>("sqrt_0")];
74
- tensor<fp32, []> var_70 = const()[name = tensor<string, []>("op_70"), val = tensor<fp32, []>(0x1.4f8b58p-17)];
75
- tensor<fp32, [128, 1]> per_feature_std = add(x = sqrt_0, y = var_70)[name = tensor<string, []>("per_feature_std")];
76
- tensor<fp32, [128, 1501]> mel_spec = real_div(x = sub_0, y = per_feature_std)[name = tensor<string, []>("mel_spec")];
77
- tensor<int32, [2]> var_75_perm_0 = const()[name = tensor<string, []>("op_75_perm_0"), val = tensor<int32, [2]>([1, 0])];
78
- tensor<int32, [1]> var_77_axes_0 = const()[name = tensor<string, []>("op_77_axes_0"), val = tensor<int32, [1]>([0])];
79
- tensor<fp32, [1501, 128]> var_75 = transpose(perm = var_75_perm_0, x = mel_spec)[name = tensor<string, []>("transpose_0")];
80
- tensor<fp32, [1, 1501, 128]> var_77 = expand_dims(axes = var_77_axes_0, x = var_75)[name = tensor<string, []>("op_77")];
81
- tensor<int32, [1]> var_79_axes_0 = const()[name = tensor<string, []>("op_79_axes_0"), val = tensor<int32, [1]>([1])];
82
- tensor<fp32, [1, 1, 1501, 128]> var_79 = expand_dims(axes = var_79_axes_0, x = var_77)[name = tensor<string, []>("op_79")];
83
- tensor<string, []> cast_7_dtype_0 = const()[name = tensor<string, []>("cast_7_dtype_0"), val = tensor<string, []>("fp16")];
84
- tensor<fp16, [1, 1, 1501, 128]> melspectrogram_features = cast(dtype = cast_7_dtype_0, x = var_79)[name = tensor<string, []>("cast_8")];
85
- } -> (melspectrogram_features);
86
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
canary-1b-v2/MelSpectrogram.mlmodelc/weights/weight.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1570ad9beb3077cf61314606d8e4c30fc1d7b971e3bb73ee9444467faa9dd671
3
- size 1184512
 
 
 
 
canary-1b-v2/config.json DELETED
@@ -1,38 +0,0 @@
1
- {
2
- "architectures": [
3
- "ParakeetForCTC"
4
- ],
5
- "ctc_loss_reduction": "mean",
6
- "ctc_zero_infinity": true,
7
- "dtype": "float32",
8
- "encoder_config": {
9
- "activation_dropout": 0.1,
10
- "attention_bias": true,
11
- "attention_dropout": 0.1,
12
- "conv_kernel_size": 9,
13
- "dropout": 0.1,
14
- "dropout_positions": 0.0,
15
- "hidden_act": "silu",
16
- "hidden_size": 1024,
17
- "initializer_range": 0.02,
18
- "intermediate_size": 4096,
19
- "layerdrop": 0.1,
20
- "max_position_embeddings": 5000,
21
- "model_type": "parakeet_encoder",
22
- "num_attention_heads": 8,
23
- "num_hidden_layers": 24,
24
- "num_key_value_heads": 8,
25
- "num_mel_bins": 128,
26
- "scale_input": false,
27
- "subsampling_conv_channels": 256,
28
- "subsampling_conv_kernel_size": 3,
29
- "subsampling_conv_stride": 2,
30
- "subsampling_factor": 8
31
- },
32
- "bos_token_id": 4,
33
- "eos_token_id": 3,
34
- "nemo_model_type": "parakeet",
35
- "initializer_range": 0.02,
36
- "pad_token_id": 1024,
37
- "vocab_size": 16385
38
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
canary-1b-v2/preprocessor_config.json DELETED
@@ -1,13 +0,0 @@
1
- {
2
- "feature_extractor_type": "ParakeetFeatureExtractor",
3
- "feature_size": 128,
4
- "hop_length": 160,
5
- "n_fft": 512,
6
- "padding_side": "right",
7
- "padding_value": 0.0,
8
- "preemphasis": 0.97,
9
- "processor_class": "ParakeetProcessor",
10
- "return_attention_mask": true,
11
- "sampling_rate": 16000,
12
- "win_length": 400
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
canary-1b-v2/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
canary-1b-v2/tokenizer_config.json DELETED
The diff for this file is too large to render. See raw diff
 
canary-1b-v2/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
parakeet-tdt_ctc-110m/config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
- "bos_token_id": 1,
3
- "eos_token_id": 2,
4
- "nemo_model_type": "parakeet",
5
- "pad_token_id": 0,
6
- "vocab_size": 1024,
7
  }
 
1
  {
2
+ "_name_or_path": "argmaxinc/ctckit-pro/parakeet-tdt_ctc-110m",
3
+ "bos_token_id": 1024,
4
+ "decoder_start_token_id": 1024,
5
+ "eos_token_id": 1024,
6
+ "vocab_size": 1024
7
  }