metadata
library_name: transformers
license: apache-2.0
base_model: SZTAKI-HLT/hubert-base-cc
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: husst-hubert-hungarian
results: []
datasets:
- ariel-ml/HuSST-augmented
husst-hubert-hungarian
This model is a fine-tuned version of SZTAKI-HLT/hubert-base-cc on ariel-ml/HuSST-augmented dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
Results
It achieves the following results on the evaluation set:
precision recall f1-score support
0 0.77 0.90 0.83 697
1 0.79 0.54 0.64 435
2 0.45 0.67 0.54 33
accuracy 0.76 1165
macro avg 0.67 0.70 0.67 1165
weighted avg 0.77 0.76 0.75 1165
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0