metadata
library_name: transformers
license: apache-2.0
base_model: arielb30/opus-finetuned-kde4-en-to-he
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: opus-finetuned-kde4-en-to-he
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-he
split: train
args: en-he
metrics:
- name: Bleu
type: bleu
value: 25.199843224388957
opus-finetuned-kde4-en-to-he
This model is a fine-tuned version of arielb30/opus-finetuned-kde4-en-to-he on the kde4 dataset. It achieves the following results on the evaluation set:
- Loss: 1.3339
- Model Preparation Time: 0.0033
- Bleu: 25.1998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Bleu |
---|---|---|---|---|---|
1.1721 | 1.0 | 2355 | 1.3879 | 0.0033 | 20.0577 |
1.0577 | 2.0 | 4710 | 1.3612 | 0.0033 | 24.5566 |
1.0224 | 3.0 | 7065 | 1.3488 | 0.0033 | 24.8552 |
0.954 | 4.0 | 9420 | 1.3403 | 0.0033 | 23.3328 |
0.9574 | 5.0 | 11775 | 1.3339 | 0.0033 | 24.1134 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1