414M tokens

  1. 73M hy wikipedia
  2. 341M arlis database

74951 unique words

3-5 ngrams

5 window length

300 embedding dim

skipgram

minimum number of words 150

100 epochs, 0.05 start lr

26 hours on 20 xeon gold cores

How to use

  1. Install fastText
pip install fasttext-wheel
  1. Import fastText in python
import fasttext
from huggingface_hub import hf_hub_download

model_path = hf_hub_download(local_dir=".",
                             repo_id="armvectores/wikipedia_arlis_tokens_fasttextskipgram_300_5",
                             filename="model.bin")
model = fasttext.load_model(model_path)
  1. Examples of usage
word = 'զենքեր'
print(model.get_nearest_neighbors(word))
print(model.get_sentence_vector(word))
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train armvectores/wikipedia_arlis_tokens_fasttextskipgram_300_5