update readme
Browse files
README.md
CHANGED
@@ -1,113 +1,125 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
---
|
19 |
-
|
20 |
-
##
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
-
|
41 |
-
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
###
|
48 |
-
-
|
49 |
-
-
|
50 |
-
|
51 |
-
###
|
52 |
-
-
|
53 |
-
-
|
54 |
-
|
55 |
-
###
|
56 |
-
-
|
57 |
-
-
|
58 |
-
|
59 |
-
###
|
60 |
-
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
-
|
69 |
-
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
- CoinGecko API: [https://www.coingecko.com/](https://www.coingecko.com/)
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- mse
|
7 |
+
tags:
|
8 |
+
- LSTM
|
9 |
+
- PyTorch
|
10 |
+
- RNN
|
11 |
+
- DeepLearning
|
12 |
+
---
|
13 |
+
# Bitcoin Price Prediction with LSTM
|
14 |
+
|
15 |
+
## Project Overview
|
16 |
+
This project aims to predict Bitcoin (BTC) prices for the next 60 days using a Long Short-Term Memory (LSTM) neural network. The dataset used contains historical BTC/USD prices from 2014 to early 2024. The project leverages PyTorch for deep learning and includes data preprocessing, feature engineering, and model evaluation.
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## Table of Contents
|
21 |
+
1. [Introduction](#introduction)
|
22 |
+
2. [Dataset Description](#dataset-description)
|
23 |
+
3. [Project Workflow](#project-workflow)
|
24 |
+
4. [Model Architecture](#model-architecture)
|
25 |
+
5. [Results](#results)
|
26 |
+
6. [How to Run](#how-to-run)
|
27 |
+
7. [Future Work](#future-work)
|
28 |
+
8. [References](#references)
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
## Introduction
|
33 |
+
Bitcoin is a highly volatile cryptocurrency, making price prediction a challenging task. This project uses sequential data modeling with LSTM to capture patterns in historical BTC prices and provide reliable predictions.
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
## Dataset Description
|
38 |
+
- **Source**: Kaggle
|
39 |
+
- **File**: `Dataset/BTC-USD.csv`
|
40 |
+
- **Columns**: `Date`, `Open`, `High`, `Low`, `Close`, `Adj Close`, `Volume`
|
41 |
+
- **Timeframe**: 2014 to early 2024
|
42 |
+
- **Frequency**: Minute-level data aggregated to daily prices.
|
43 |
+
|
44 |
+
---
|
45 |
+
|
46 |
+
## Project Workflow
|
47 |
+
### 1. Data Preparation
|
48 |
+
- Import libraries and load the dataset.
|
49 |
+
- Perform initial exploration to understand the data structure.
|
50 |
+
|
51 |
+
### 2. Data Cleaning
|
52 |
+
- Handle missing values and duplicates.
|
53 |
+
- Normalize and standardize the data for better model performance.
|
54 |
+
|
55 |
+
### 3. Exploratory Data Analysis (EDA)
|
56 |
+
- Visualize trends in BTC prices and trading volume.
|
57 |
+
- Analyze correlations between features.
|
58 |
+
|
59 |
+
### 4. Feature Engineering
|
60 |
+
- Create sequences of 30 days as input features.
|
61 |
+
- Scale features using `MinMaxScaler`.
|
62 |
+
|
63 |
+
### 5. Modeling
|
64 |
+
- Build LSTM and GRU models using PyTorch.
|
65 |
+
- Train the models with Mean Squared Error (MSE) loss and Adam optimizer.
|
66 |
+
|
67 |
+
### 6. Evaluation
|
68 |
+
- Evaluate the model using Root Mean Squared Error (RMSE).
|
69 |
+
- Visualize predictions against actual prices.
|
70 |
+
|
71 |
+
### 7. Prediction
|
72 |
+
- Predict BTC prices for the next 60 days.
|
73 |
+
- Compare predictions with actual future prices.
|
74 |
+
|
75 |
+
---
|
76 |
+
|
77 |
+
## Model Architecture
|
78 |
+
The LSTM model consists of:
|
79 |
+
- **Input Layer**: Sequence of 30 days of closing prices.
|
80 |
+
- **Hidden Layers**: 2 LSTM layers with 64 hidden units.
|
81 |
+
- **Output Layer**: Single neuron for predicting the next day's price.
|
82 |
+
|
83 |
+
---
|
84 |
+
|
85 |
+
## Results
|
86 |
+
- **LSTM Test RMSE**: ~1,118 USD
|
87 |
+
- **GRU Test RMSE**: ~21,445 USD
|
88 |
+
- The LSTM model outperformed the GRU model, demonstrating its ability to capture sequential patterns in BTC prices.
|
89 |
+
|
90 |
+

|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
## How to Run
|
95 |
+
1. Clone the repository:
|
96 |
+
```bash
|
97 |
+
git clone <repository-url>
|
98 |
+
cd Bitcoin-Prediction
|
99 |
+
```
|
100 |
+
|
101 |
+
2. Install dependencies:
|
102 |
+
```bash
|
103 |
+
pip install -r requirements.txt
|
104 |
+
```
|
105 |
+
|
106 |
+
3. Run the Jupyter Notebook:
|
107 |
+
```bash
|
108 |
+
jupyter notebook Notebook.ipynb
|
109 |
+
```
|
110 |
+
|
111 |
+
4. Follow the steps in the notebook to train the model and visualize predictions.
|
112 |
+
|
113 |
+
---
|
114 |
+
|
115 |
+
## Future Work
|
116 |
+
- Add additional features such as macroeconomic indicators, Moving Average, RSI or sentiment analysis.
|
117 |
+
- Perform hyperparameter tuning to further improve model performance.
|
118 |
+
- Deploy the model as a web application for real-time predictions.
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## References
|
123 |
+
- Kaggle Dataset: [BTC-USD Historical Data](https://www.kaggle.com/)
|
124 |
+
- PyTorch Documentation: [https://pytorch.org/](https://pytorch.org/)
|
125 |
- CoinGecko API: [https://www.coingecko.com/](https://www.coingecko.com/)
|