Improve language tag
#1
by
lbourdois
- opened
README.md
CHANGED
@@ -1,385 +1,397 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
language:
|
4 |
-
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
|
14 |
-
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
type:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
type:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
type:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
type:
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
type:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
type:
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
type:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
type:
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
)
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
#
|
218 |
-
#
|
219 |
-
#
|
220 |
-
#
|
221 |
-
#
|
222 |
-
#
|
223 |
-
#
|
224 |
-
#
|
225 |
-
#
|
226 |
-
#
|
227 |
-
#
|
228 |
-
#
|
229 |
-
#
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
247 |
-
|
248 |
-
|
|
249 |
-
|
|
250 |
-
|
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
257 |
-
|
258 |
-
|
|
259 |
-
|
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
276 |
-
|
277 |
-
|
|
278 |
-
|
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
|
283 |
-
|
284 |
-
|
|
285 |
-
|
|
286 |
-
|
|
287 |
-
|
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
292 |
-
|
293 |
-
|
|
294 |
-
|
|
295 |
-
|
|
296 |
-
|
|
297 |
-
|
|
298 |
-
|
|
299 |
-
|
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
304 |
-
|
305 |
-
|
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
310 |
-
|
311 |
-
|
|
312 |
-
| Accuracy
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
329 |
-
|
330 |
-
|
|
331 |
-
|
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
336 |
-
|
337 |
-
|
|
338 |
-
| 2011-
|
339 |
-
| 2012-
|
340 |
-
|
|
341 |
-
|
|
342 |
-
|
|
343 |
-
|
|
344 |
-
|
|
345 |
-
|
|
346 |
-
|
|
347 |
-
|
|
348 |
-
|
|
349 |
-
|
|
350 |
-
|
|
351 |
-
|
|
352 |
-
|
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
357 |
-
|
358 |
-
|
|
359 |
-
| Accuracy
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
376 |
-
|
377 |
-
|
|
378 |
-
|
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- zho
|
5 |
+
- eng
|
6 |
+
- fra
|
7 |
+
- spa
|
8 |
+
- por
|
9 |
+
- deu
|
10 |
+
- ita
|
11 |
+
- rus
|
12 |
+
- jpn
|
13 |
+
- kor
|
14 |
+
- vie
|
15 |
+
- tha
|
16 |
+
- ara
|
17 |
+
base_model:
|
18 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
datasets:
|
21 |
+
- adalbertojunior/openHermes_portuguese
|
22 |
+
- cnmoro/smoltalk-555k-ptbr
|
23 |
+
- cnmoro/RagMixPTBR-Legal-Alpaca-2M
|
24 |
+
- adalbertojunior/dolphin-2.9-portuguese
|
25 |
+
model-index:
|
26 |
+
- name: Qwen2.5-0.5B-Portuguese-v2
|
27 |
+
results:
|
28 |
+
- task:
|
29 |
+
type: text-generation
|
30 |
+
name: Text Generation
|
31 |
+
dataset:
|
32 |
+
name: ENEM Challenge (No Images)
|
33 |
+
type: eduagarcia/enem_challenge
|
34 |
+
split: train
|
35 |
+
args:
|
36 |
+
num_few_shot: 3
|
37 |
+
metrics:
|
38 |
+
- type: acc
|
39 |
+
value: 36.81
|
40 |
+
name: accuracy
|
41 |
+
source:
|
42 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
43 |
+
name: Open Portuguese LLM Leaderboard
|
44 |
+
- task:
|
45 |
+
type: text-generation
|
46 |
+
name: Text Generation
|
47 |
+
dataset:
|
48 |
+
name: BLUEX (No Images)
|
49 |
+
type: eduagarcia-temp/BLUEX_without_images
|
50 |
+
split: train
|
51 |
+
args:
|
52 |
+
num_few_shot: 3
|
53 |
+
metrics:
|
54 |
+
- type: acc
|
55 |
+
value: 26.84
|
56 |
+
name: accuracy
|
57 |
+
source:
|
58 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
59 |
+
name: Open Portuguese LLM Leaderboard
|
60 |
+
- task:
|
61 |
+
type: text-generation
|
62 |
+
name: Text Generation
|
63 |
+
dataset:
|
64 |
+
name: OAB Exams
|
65 |
+
type: eduagarcia/oab_exams
|
66 |
+
split: train
|
67 |
+
args:
|
68 |
+
num_few_shot: 3
|
69 |
+
metrics:
|
70 |
+
- type: acc
|
71 |
+
value: 30.62
|
72 |
+
name: accuracy
|
73 |
+
source:
|
74 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
75 |
+
name: Open Portuguese LLM Leaderboard
|
76 |
+
- task:
|
77 |
+
type: text-generation
|
78 |
+
name: Text Generation
|
79 |
+
dataset:
|
80 |
+
name: Assin2 RTE
|
81 |
+
type: assin2
|
82 |
+
split: test
|
83 |
+
args:
|
84 |
+
num_few_shot: 15
|
85 |
+
metrics:
|
86 |
+
- type: f1_macro
|
87 |
+
value: 87.91
|
88 |
+
name: f1-macro
|
89 |
+
source:
|
90 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
91 |
+
name: Open Portuguese LLM Leaderboard
|
92 |
+
- task:
|
93 |
+
type: text-generation
|
94 |
+
name: Text Generation
|
95 |
+
dataset:
|
96 |
+
name: Assin2 STS
|
97 |
+
type: eduagarcia/portuguese_benchmark
|
98 |
+
split: test
|
99 |
+
args:
|
100 |
+
num_few_shot: 15
|
101 |
+
metrics:
|
102 |
+
- type: pearson
|
103 |
+
value: 59.01
|
104 |
+
name: pearson
|
105 |
+
source:
|
106 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
107 |
+
name: Open Portuguese LLM Leaderboard
|
108 |
+
- task:
|
109 |
+
type: text-generation
|
110 |
+
name: Text Generation
|
111 |
+
dataset:
|
112 |
+
name: FaQuAD NLI
|
113 |
+
type: ruanchaves/faquad-nli
|
114 |
+
split: test
|
115 |
+
args:
|
116 |
+
num_few_shot: 15
|
117 |
+
metrics:
|
118 |
+
- type: f1_macro
|
119 |
+
value: 43.97
|
120 |
+
name: f1-macro
|
121 |
+
source:
|
122 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
123 |
+
name: Open Portuguese LLM Leaderboard
|
124 |
+
- task:
|
125 |
+
type: text-generation
|
126 |
+
name: Text Generation
|
127 |
+
dataset:
|
128 |
+
name: HateBR Binary
|
129 |
+
type: ruanchaves/hatebr
|
130 |
+
split: test
|
131 |
+
args:
|
132 |
+
num_few_shot: 25
|
133 |
+
metrics:
|
134 |
+
- type: f1_macro
|
135 |
+
value: 33.62
|
136 |
+
name: f1-macro
|
137 |
+
source:
|
138 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
139 |
+
name: Open Portuguese LLM Leaderboard
|
140 |
+
- task:
|
141 |
+
type: text-generation
|
142 |
+
name: Text Generation
|
143 |
+
dataset:
|
144 |
+
name: PT Hate Speech Binary
|
145 |
+
type: hate_speech_portuguese
|
146 |
+
split: test
|
147 |
+
args:
|
148 |
+
num_few_shot: 25
|
149 |
+
metrics:
|
150 |
+
- type: f1_macro
|
151 |
+
value: 41.23
|
152 |
+
name: f1-macro
|
153 |
+
source:
|
154 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
155 |
+
name: Open Portuguese LLM Leaderboard
|
156 |
+
- task:
|
157 |
+
type: text-generation
|
158 |
+
name: Text Generation
|
159 |
+
dataset:
|
160 |
+
name: tweetSentBR
|
161 |
+
type: eduagarcia/tweetsentbr_fewshot
|
162 |
+
split: test
|
163 |
+
args:
|
164 |
+
num_few_shot: 25
|
165 |
+
metrics:
|
166 |
+
- type: f1_macro
|
167 |
+
value: 52.33
|
168 |
+
name: f1-macro
|
169 |
+
source:
|
170 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
171 |
+
name: Open Portuguese LLM Leaderboard
|
172 |
+
---
|
173 |
+
|
174 |
+
Qwen2.5-0.5B finetuned for proficiency in Portuguese language and increased intelligence.
|
175 |
+
|
176 |
+
```text
|
177 |
+
https://ollama.com/cnmoro/Qwen2.5-0.5B-Portuguese-v2
|
178 |
+
```
|
179 |
+
|
180 |
+
```python
|
181 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
182 |
+
|
183 |
+
model_name = "cnmoro/Qwen2.5-0.5B-Portuguese-v2"
|
184 |
+
|
185 |
+
model = AutoModelForCausalLM.from_pretrained(
|
186 |
+
model_name,
|
187 |
+
torch_dtype="auto",
|
188 |
+
device_map="auto"
|
189 |
+
)
|
190 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
191 |
+
|
192 |
+
prompt = "Escreva uma breve introdução sobre LLMs (Large Language Models) e suas aplicações."
|
193 |
+
|
194 |
+
# System prompt is always injected and hardcoded automatically
|
195 |
+
# for ideal performance in portuguese language.
|
196 |
+
# No need to write it again.
|
197 |
+
messages = [
|
198 |
+
{"role": "user", "content": prompt}
|
199 |
+
]
|
200 |
+
text = tokenizer.apply_chat_template(
|
201 |
+
messages,
|
202 |
+
tokenize=False,
|
203 |
+
add_generation_prompt=True
|
204 |
+
)
|
205 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
206 |
+
|
207 |
+
generated_ids = model.generate(
|
208 |
+
**model_inputs,
|
209 |
+
max_new_tokens=512
|
210 |
+
)
|
211 |
+
generated_ids = [
|
212 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
213 |
+
]
|
214 |
+
|
215 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
216 |
+
response
|
217 |
+
# As Large Language Models (LLMs) são sistemas computacionais projetados para produzir
|
218 |
+
# linguagem natural com alta precisão e fluência. Eles usam algoritmos avançados para compreender
|
219 |
+
# e gerar texto, permitindo-lhes realizar tarefas como tradução de idiomas, geração de conteúdo
|
220 |
+
# e processamento de linguagem natural.
|
221 |
+
#
|
222 |
+
# Os LLMs têm sido amplamente utilizados na área da inteligência artificial e do aprendizado
|
223 |
+
# de máquina há vários anos. Alguns dos principais usos de LLMs incluem:
|
224 |
+
#
|
225 |
+
# 1. Tradução automática: Os LLMs podem traduzir textos entre diferentes idiomas, tornando-os
|
226 |
+
# úteis em setores onde a comunicação internacional é crítica, como negócios internacionais,
|
227 |
+
# diplomacia ou relações públicas.
|
228 |
+
#
|
229 |
+
# 2. Geração de conteúdo: os LLMs podem criar conteúdo altamente personalizado e adaptado às
|
230 |
+
# necessidades específicas de seus usuários, tornando-os ideais para criação de sites, aplicativos
|
231 |
+
# móveis ou plataformas de mídia social.
|
232 |
+
#
|
233 |
+
# 3. Processamento de Linguagem Natural: Os LLMs podem ser treinados para reconhecer e compreender
|
234 |
+
# padrões de linguagem, permitindo-lhes compreender melhor as intenções humanas e responder adequadamente.
|
235 |
+
#
|
236 |
+
# 4. Análise de sentimento: Os LLMs podem analisar dados de texto e identificar sentimentos, ajudando
|
237 |
+
# a entender como as pessoas se sentem em relação a determinadas questões ou questões sociais.
|
238 |
+
#
|
239 |
+
# No geral, os LLMs estão se tornando cada vez mais importantes à medida que a tecnologia continua a
|
240 |
+
# avançar. À medida que continuamos a usar LLMs em nossas vidas diárias, podemos esperar ver ainda
|
241 |
+
# mais desenvolvimentos interessantes no futuro.
|
242 |
+
```
|
243 |
+
|
244 |
+
## Overall Results
|
245 |
+
|
246 |
+
| Task | Metric | Value | StdErr |
|
247 |
+
|---------------------------|---------------|---------|---------|
|
248 |
+
| ASSIN2 RTE | F1 Macro | 0.4486 | 0.0067 |
|
249 |
+
| ASSIN2 RTE | Accuracy | 0.5560 | 0.0071 |
|
250 |
+
| ASSIN2 STS | Pearson | 0.4091 | 0.0104 |
|
251 |
+
| ASSIN2 STS | MSE | 5.6395 | N/A |
|
252 |
+
| BluEX | Accuracy | 0.2503 | 0.0094 |
|
253 |
+
| ENEM Challenge | Accuracy | 0.3128 | 0.0071 |
|
254 |
+
| FAQUAD NLI | F1 Macro | 0.4611 | 0.0094 |
|
255 |
+
| FAQUAD NLI | Accuracy | 0.7877 | 0.0113 |
|
256 |
+
| HateBR Offensive (Binary) | F1 Macro | 0.3439 | 0.0049 |
|
257 |
+
| HateBR Offensive (Binary) | Accuracy | 0.4857 | 0.0095 |
|
258 |
+
| OAB Exams | Accuracy | 0.3062 | 0.0057 |
|
259 |
+
| Portuguese Hate Speech (Binary) | F1 Macro | 0.4119 | 0.0038 |
|
260 |
+
| Portuguese Hate Speech (Binary) | Accuracy | 0.7004 | 0.0111 |
|
261 |
+
| TweetSentBR | F1 Macro | 0.5055 | 0.0078 |
|
262 |
+
| TweetSentBR | Accuracy | 0.5697 | 0.0078 |
|
263 |
+
|
264 |
+
## Detailed Results by Task
|
265 |
+
|
266 |
+
### ASSIN2 RTE
|
267 |
+
|
268 |
+
| Metric | Value | StdErr |
|
269 |
+
|-------------|---------|---------|
|
270 |
+
| F1 Macro | 0.4486 | 0.0067 |
|
271 |
+
| Accuracy | 0.5560 | 0.0071 |
|
272 |
+
|
273 |
+
### ASSIN2 STS
|
274 |
+
|
275 |
+
| Metric | Value | StdErr |
|
276 |
+
|-------------|---------|---------|
|
277 |
+
| Pearson | 0.4091 | 0.0104 |
|
278 |
+
| MSE | 5.6395 | N/A |
|
279 |
+
|
280 |
+
### BluEX
|
281 |
+
|
282 |
+
| Exam ID | Metric | Value | StdErr |
|
283 |
+
|-------------------|----------|---------|---------|
|
284 |
+
| All | Accuracy | 0.2503 | 0.0094 |
|
285 |
+
| USP_2018 | Accuracy | 0.2037 | 0.0315 |
|
286 |
+
| UNICAMP_2018 | Accuracy | 0.1852 | 0.0306 |
|
287 |
+
| UNICAMP_2021_1 | Accuracy | 0.0870 | 0.0240 |
|
288 |
+
| USP_2020 | Accuracy | 0.2143 | 0.0317 |
|
289 |
+
| USP_2023 | Accuracy | 0.2045 | 0.0350 |
|
290 |
+
| UNICAMP_2019 | Accuracy | 0.2600 | 0.0358 |
|
291 |
+
| USP_2019 | Accuracy | 0.1500 | 0.0326 |
|
292 |
+
| UNICAMP_2020 | Accuracy | 0.2182 | 0.0321 |
|
293 |
+
| UNICAMP_2021_2 | Accuracy | 0.2941 | 0.0367 |
|
294 |
+
| UNICAMP_2023 | Accuracy | 0.4186 | 0.0433 |
|
295 |
+
| UNICAMP_2024 | Accuracy | 0.3111 | 0.0398 |
|
296 |
+
| USP_2024 | Accuracy | 0.2683 | 0.0398 |
|
297 |
+
| USP_2021 | Accuracy | 0.3269 | 0.0375 |
|
298 |
+
| UNICAMP_2022 | Accuracy | 0.3590 | 0.0444 |
|
299 |
+
| USP_2022 | Accuracy | 0.2857 | 0.0370 |
|
300 |
+
|
301 |
+
### ENEM Challenge
|
302 |
+
|
303 |
+
| Exam ID | Metric | Value | StdErr |
|
304 |
+
|-----------|----------|---------|---------|
|
305 |
+
| All | Accuracy | 0.3128 | 0.0071 |
|
306 |
+
| 2017 | Accuracy | 0.2845 | 0.0241 |
|
307 |
+
| 2016 | Accuracy | 0.2479 | 0.0226 |
|
308 |
+
| 2016_2 | Accuracy | 0.2846 | 0.0235 |
|
309 |
+
| 2022 | Accuracy | 0.3534 | 0.0240 |
|
310 |
+
| 2012 | Accuracy | 0.3362 | 0.0253 |
|
311 |
+
| 2011 | Accuracy | 0.3333 | 0.0251 |
|
312 |
+
| 2010 | Accuracy | 0.3846 | 0.0260 |
|
313 |
+
| 2014 | Accuracy | 0.3211 | 0.0259 |
|
314 |
+
| 2009 | Accuracy | 0.2696 | 0.0239 |
|
315 |
+
| 2015 | Accuracy | 0.2521 | 0.0229 |
|
316 |
+
| 2023 | Accuracy | 0.3481 | 0.0236 |
|
317 |
+
| 2013 | Accuracy | 0.3333 | 0.0261 |
|
318 |
+
|
319 |
+
### FAQUAD NLI
|
320 |
+
|
321 |
+
| Metric | Value | StdErr |
|
322 |
+
|-------------|---------|---------|
|
323 |
+
| F1 Macro | 0.4611 | 0.0094 |
|
324 |
+
| Accuracy | 0.7877 | 0.0113 |
|
325 |
+
|
326 |
+
### HateBR Offensive (Binary)
|
327 |
+
|
328 |
+
| Metric | Value | StdErr |
|
329 |
+
|-------------|---------|---------|
|
330 |
+
| F1 Macro | 0.3439 | 0.0049 |
|
331 |
+
| Accuracy | 0.4857 | 0.0095 |
|
332 |
+
|
333 |
+
### OAB Exams
|
334 |
+
|
335 |
+
| Exam ID | Metric | Value | StdErr |
|
336 |
+
|-------------|----------|---------|---------|
|
337 |
+
| All | Accuracy | 0.3062 | 0.0057 |
|
338 |
+
| 2011-05 | Accuracy | 0.3375 | 0.0304 |
|
339 |
+
| 2012-06a | Accuracy | 0.2625 | 0.0285 |
|
340 |
+
| 2010-02 | Accuracy | 0.3700 | 0.0279 |
|
341 |
+
| 2017-22 | Accuracy | 0.3500 | 0.0309 |
|
342 |
+
| 2016-20 | Accuracy | 0.3125 | 0.0300 |
|
343 |
+
| 2011-03 | Accuracy | 0.2626 | 0.0255 |
|
344 |
+
| 2015-17 | Accuracy | 0.3205 | 0.0304 |
|
345 |
+
| 2017-23 | Accuracy | 0.2875 | 0.0292 |
|
346 |
+
| 2018-25 | Accuracy | 0.3625 | 0.0311 |
|
347 |
+
| 2016-19 | Accuracy | 0.2436 | 0.0281 |
|
348 |
+
| 2017-24 | Accuracy | 0.1625 | 0.0238 |
|
349 |
+
| 2015-16 | Accuracy | 0.3125 | 0.0300 |
|
350 |
+
| 2011-04 | Accuracy | 0.3250 | 0.0301 |
|
351 |
+
| 2012-07 | Accuracy | 0.3500 | 0.0307 |
|
352 |
+
| 2012-06 | Accuracy | 0.1875 | 0.0253 |
|
353 |
+
| 2012-09 | Accuracy | 0.2468 | 0.0284 |
|
354 |
+
| 2013-12 | Accuracy | 0.3625 | 0.0311 |
|
355 |
+
| 2013-11 | Accuracy | 0.3000 | 0.0295 |
|
356 |
+
| 2010-01 | Accuracy | 0.3412 | 0.0296 |
|
357 |
+
| 2015-18 | Accuracy | 0.2875 | 0.0292 |
|
358 |
+
| 2014-13 | Accuracy | 0.3500 | 0.0308 |
|
359 |
+
| 2013-10 | Accuracy | 0.3125 | 0.0300 |
|
360 |
+
| 2016-20a | Accuracy | 0.2500 | 0.0279 |
|
361 |
+
| 2014-14 | Accuracy | 0.3125 | 0.0301 |
|
362 |
+
| 2012-08 | Accuracy | 0.3000 | 0.0296 |
|
363 |
+
| 2016-21 | Accuracy | 0.3375 | 0.0304 |
|
364 |
+
| 2014-15 | Accuracy | 0.4103 | 0.0321 |
|
365 |
+
|
366 |
+
### Portuguese Hate Speech (Binary)
|
367 |
+
|
368 |
+
| Metric | Value | StdErr |
|
369 |
+
|-------------|---------|---------|
|
370 |
+
| F1 Macro | 0.4119 | 0.0038 |
|
371 |
+
| Accuracy | 0.7004 | 0.0111 |
|
372 |
+
|
373 |
+
### TweetSentBR
|
374 |
+
|
375 |
+
| Metric | Value | StdErr |
|
376 |
+
|-------------|---------|---------|
|
377 |
+
| F1 Macro | 0.5055 | 0.0078 |
|
378 |
+
| Accuracy | 0.5697 | 0.0078 |
|
379 |
+
|
380 |
+
|
381 |
+
# Open Portuguese LLM Leaderboard Evaluation Results
|
382 |
+
|
383 |
+
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/cnmoro/Qwen2.5-0.5B-Portuguese-v2) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
|
384 |
+
|
385 |
+
| Metric | Value |
|
386 |
+
|--------------------------|---------|
|
387 |
+
|Average |**45.81**|
|
388 |
+
|ENEM Challenge (No Images)| 36.81|
|
389 |
+
|BLUEX (No Images) | 26.84|
|
390 |
+
|OAB Exams | 30.62|
|
391 |
+
|Assin2 RTE | 87.91|
|
392 |
+
|Assin2 STS | 59.01|
|
393 |
+
|FaQuAD NLI | 43.97|
|
394 |
+
|HateBR Binary | 33.62|
|
395 |
+
|PT Hate Speech Binary | 41.23|
|
396 |
+
|tweetSentBR | 52.33|
|
397 |
+
|