nomic-embed-indonesian
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 specifically for Indonesian language text embedding tasks. It maps Indonesian sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
🚀 Quick Start
from sentence_transformers import SentenceTransformer
# Load the model (requires trust_remote_code=True)
model = SentenceTransformer("asmud/nomic-embed-indonesian", trust_remote_code=True)
# Indonesian text examples
texts = [
"search_query: Apa itu kecerdasan buatan?",
"search_document: Kecerdasan buatan adalah teknologi yang memungkinkan mesin belajar",
"classification: Produk ini sangat berkualitas (sentimen: positif)"
]
# Generate embeddings
embeddings = model.encode(texts)
print(f"Embedding shape: {embeddings.shape}") # (3, 768)
🇮🇩 Specialized for Indonesian Language
This model is optimized for Indonesian text understanding across multiple domains including:
- Technology (Teknologi) - AI, gadgets, digital innovation
- Politics (Politik) - Government, elections, public policy
- Law (Hukum) - Legal affairs, crime, justice
- Economy (Ekonomi) - Business, finance, trade
- Education (Pendidikan) - Academic, learning, research
- Health (Kesehatan) - Medical, wellness, healthcare
- Sports (Olahraga) - Athletics, competitions, fitness
- Culture (Budaya) - Literature, arts, traditions
- And more...
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NomicBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
⚠️ Important: This model requires trust_remote_code=True
due to custom model architecture.
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("asmud/nomic-embed-indonesian", trust_remote_code=True)
# Run inference with Indonesian text
sentences = [
'search_query: Apa itu kecerdasan buatan?',
'search_document: Kecerdasan buatan adalah teknologi yang memungkinkan mesin belajar dari data',
'classification: Produk ini sangat berkualitas dan sesuai harapan (sentimen: positif)',
'clustering: makanan tradisional Indonesia seperti rendang dan gudeg',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7154, 0.7378],
# [0.7154, 1.0000, 0.6583],
# [0.7378, 0.6583, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Dataset:
indonesian-diversity-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4358 |
spearman_cosine | 0.2857 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,294 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 8 tokens
- mean: 20.45 tokens
- max: 181 tokens
- min: 7 tokens
- mean: 117.93 tokens
- max: 508 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence_0 sentence_1 label clustering: artikel berita Indonesia
clustering: Paris Saint - Germain gagal mempertahankan status tak terkalahkan di Ligue 1 Prancis , setelah dipaksa menelan kekalahan perdana musim ini kala menyambangi Strasbourg . Tanda - tanda kurang maksimalnya performa klub ibukota Prancis ini sudah terlihat di awal pertandingan . Lini belakang gagal mengantisipasi skema tendangan bebas Strasbourg sehingga umpan Dimitri Lienard diteruskan dengan mudah oleh Nuno Da Costa pada menit ke - 13 untuk mencetak gol pembuka . Skuat asuhan Unai Emery langsung bermain agresif untuk mengejar ketertinggalan , mengandalkan trio Neymar , Kylian Mbappe dan Angel Di Maria . Nama terakhir mendapat kesempatan pada menit ke - 39 usai menerima umpan terobosan dari Neymar , tetapi sayang sepakannya gagal menemui sasaran meski sudah tidak dapat diantisipasi kiper . Mbappe akhirnya yang sukses mencatatkan namanya di papan skor . Mantan pemain Monaco itu menyambar umpan tarik Rabiot di dalam kotak penalti pada menit ke - 42 untuk membuat skor sama kuat . B...
1.0
search_query: KPK resmi menetapkan Ketua DPR Setya Novanto sebag
search_document: KPK resmi menetapkan Ketua DPR Setya Novanto sebagai tersangka kasus korupsi pengadaan proyek e - KTP . Penetapan status tersangka yang kedua kalinya ini disampaikan Wakil Ketua KPK Saut Situmorang . Novanto dijerat dengan Pasal 2 ayat 1 subsider Pasal 3 Undang-Undang Nomor 31 tahun 1999 sebagaimana diubah dengan Undang-Undang Nomor 20 tahun 2001 tentang Pemberantasan Korupsi juncto Pasal 55 ayat 1 ke - 1 KUHP .
1.0
search_query: Google memperkenalkan laptop chromebook kelas atas
classification: ga da wifi d lantai 2,kamar mandi ga da gantungan handuk or baju,over all bagus,n recomended (sentimen: positif)
0.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 1per_device_eval_batch_size
: 1num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 1per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | indonesian-diversity-eval_spearman_cosine |
---|---|---|---|
0.0794 | 500 | 0.0 | - |
0.1589 | 1000 | 0.0 | - |
0.2383 | 1500 | 0.0 | - |
0.3178 | 2000 | 0.0 | - |
0.3972 | 2500 | 0.0 | - |
0.4766 | 3000 | 0.0 | - |
0.5561 | 3500 | 0.0 | - |
0.6355 | 4000 | 0.0 | - |
0.7150 | 4500 | 0.0 | - |
0.7944 | 5000 | 0.0 | - |
0.8738 | 5500 | 0.0 | - |
0.9533 | 6000 | 0.0 | - |
1.0 | 6294 | - | 0.2857 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.54.1
- PyTorch: 2.7.1
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 52
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for asmud/nomic-embed-indonesian
Base model
nomic-ai/nomic-embed-text-v1.5Evaluation results
- Pearson Cosine on indonesian diversity evalself-reported0.436
- Spearman Cosine on indonesian diversity evalself-reported0.286