Shona
Collection
Experimental automatic speech recognition models developed for the Shona language
•
36 items
•
Updated
This model is a fine-tuned version of facebook/mms-300m on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
33.7728 | 0.9955 | 55 | 3.2848 | 1.0 | 1.0 |
12.0407 | 1.9910 | 110 | 2.9063 | 1.0 | 1.0 |
11.7013 | 2.9864 | 165 | 2.8895 | 1.0 | 1.0 |
11.2973 | 4.0 | 221 | 2.8169 | 1.0 | 1.0 |
11.1719 | 4.9955 | 276 | 2.5708 | 1.0 | 0.8738 |
8.8604 | 5.9910 | 331 | 1.6831 | 1.0 | 0.5577 |
6.0356 | 6.9864 | 386 | 1.1403 | 0.9983 | 0.3583 |
4.3072 | 8.0 | 442 | 0.8494 | 0.9471 | 0.2649 |
3.3072 | 8.9955 | 497 | 0.6382 | 0.8545 | 0.1923 |
2.3828 | 9.9910 | 552 | 0.4925 | 0.6959 | 0.1443 |
1.7086 | 10.9864 | 607 | 0.3803 | 0.5268 | 0.1041 |
1.2672 | 12.0 | 663 | 0.3669 | 0.4825 | 0.0934 |
1.0349 | 12.9955 | 718 | 0.3209 | 0.4346 | 0.0825 |
0.8498 | 13.9910 | 773 | 0.3147 | 0.4300 | 0.0818 |
0.7259 | 14.9864 | 828 | 0.3151 | 0.4054 | 0.0742 |
0.6193 | 16.0 | 884 | 0.3132 | 0.4200 | 0.0748 |
0.5381 | 16.9955 | 939 | 0.3256 | 0.3895 | 0.0711 |
0.4792 | 17.9910 | 994 | 0.3441 | 0.3863 | 0.0699 |
0.4266 | 18.9864 | 1049 | 0.3323 | 0.3855 | 0.0692 |
0.3717 | 20.0 | 1105 | 0.3396 | 0.3871 | 0.0671 |
0.3503 | 20.9955 | 1160 | 0.3394 | 0.3772 | 0.0679 |
0.3254 | 21.9910 | 1215 | 0.3383 | 0.3868 | 0.0682 |
0.2808 | 22.9864 | 1270 | 0.3784 | 0.3808 | 0.0684 |
0.2534 | 24.0 | 1326 | 0.3449 | 0.3629 | 0.0652 |
0.2467 | 24.9955 | 1381 | 0.3540 | 0.3725 | 0.0664 |
0.2271 | 25.9910 | 1436 | 0.3677 | 0.3512 | 0.0630 |
0.2197 | 26.9864 | 1491 | 0.3623 | 0.3664 | 0.0645 |
0.2041 | 28.0 | 1547 | 0.3791 | 0.3950 | 0.0653 |
0.2013 | 28.9955 | 1602 | 0.3656 | 0.3515 | 0.0619 |
0.1877 | 29.9910 | 1657 | 0.3700 | 0.3533 | 0.0632 |
0.1763 | 30.9864 | 1712 | 0.3907 | 0.3594 | 0.0638 |
0.1651 | 32.0 | 1768 | 0.3825 | 0.3713 | 0.0652 |
0.1697 | 32.9955 | 1823 | 0.3777 | 0.3546 | 0.0624 |
0.1699 | 33.9910 | 1878 | 0.4016 | 0.3536 | 0.0631 |
0.1553 | 34.9864 | 1933 | 0.4027 | 0.3547 | 0.0620 |
0.1438 | 36.0 | 1989 | 0.4027 | 0.3444 | 0.0612 |
0.1526 | 36.9955 | 2044 | 0.4131 | 0.3510 | 0.0613 |
0.1388 | 37.9910 | 2099 | 0.3921 | 0.3594 | 0.0617 |
0.1334 | 38.9864 | 2154 | 0.3944 | 0.3519 | 0.0614 |
0.1269 | 40.0 | 2210 | 0.4067 | 0.3486 | 0.0611 |
0.1332 | 40.9955 | 2265 | 0.3779 | 0.3416 | 0.0594 |
0.1239 | 41.9910 | 2320 | 0.4081 | 0.3432 | 0.0603 |
0.1172 | 42.9864 | 2375 | 0.3946 | 0.3356 | 0.0587 |
0.1174 | 44.0 | 2431 | 0.4208 | 0.3333 | 0.0582 |
0.1168 | 44.9955 | 2486 | 0.3811 | 0.3297 | 0.0585 |
0.1118 | 45.9910 | 2541 | 0.4092 | 0.3406 | 0.0596 |
0.1061 | 46.9864 | 2596 | 0.4050 | 0.3248 | 0.0573 |
0.1019 | 48.0 | 2652 | 0.4025 | 0.3250 | 0.0572 |
0.0959 | 48.9955 | 2707 | 0.4168 | 0.3306 | 0.0579 |
0.102 | 49.9910 | 2762 | 0.4353 | 0.3300 | 0.0571 |
0.0967 | 50.9864 | 2817 | 0.4308 | 0.3307 | 0.0587 |
0.0953 | 52.0 | 2873 | 0.4258 | 0.3227 | 0.0567 |
0.0936 | 52.9955 | 2928 | 0.4012 | 0.3262 | 0.0555 |
0.0917 | 53.9910 | 2983 | 0.4252 | 0.3219 | 0.0549 |
0.0851 | 54.9864 | 3038 | 0.4243 | 0.3331 | 0.0570 |
0.0829 | 56.0 | 3094 | 0.4353 | 0.3224 | 0.0558 |
0.0761 | 56.9955 | 3149 | 0.4437 | 0.3299 | 0.0569 |
0.074 | 57.9910 | 3204 | 0.4178 | 0.3231 | 0.0551 |
0.0731 | 58.9864 | 3259 | 0.4297 | 0.3249 | 0.0560 |
0.0683 | 60.0 | 3315 | 0.4271 | 0.3215 | 0.0549 |
0.0698 | 60.9955 | 3370 | 0.4462 | 0.3197 | 0.0539 |
0.0722 | 61.9910 | 3425 | 0.4369 | 0.3157 | 0.0535 |
0.0654 | 62.9864 | 3480 | 0.4259 | 0.3208 | 0.0545 |
0.0653 | 64.0 | 3536 | 0.4431 | 0.3169 | 0.0544 |
0.0636 | 64.9955 | 3591 | 0.4397 | 0.3149 | 0.0535 |
0.0619 | 65.9910 | 3646 | 0.4410 | 0.3195 | 0.0549 |
0.0622 | 66.9864 | 3701 | 0.4306 | 0.3199 | 0.0545 |
0.0558 | 68.0 | 3757 | 0.4444 | 0.3099 | 0.0534 |
0.0595 | 68.9955 | 3812 | 0.4487 | 0.3123 | 0.0530 |
0.0558 | 69.9910 | 3867 | 0.4535 | 0.3110 | 0.0534 |
0.0487 | 70.9864 | 3922 | 0.4498 | 0.3105 | 0.0530 |
0.0512 | 72.0 | 3978 | 0.4411 | 0.3073 | 0.0524 |
0.0496 | 72.9955 | 4033 | 0.4345 | 0.3135 | 0.0533 |
0.0505 | 73.9910 | 4088 | 0.4520 | 0.3080 | 0.0521 |
0.0431 | 74.9864 | 4143 | 0.4432 | 0.3044 | 0.0518 |
0.0456 | 76.0 | 4199 | 0.4548 | 0.2995 | 0.0514 |
0.045 | 76.9955 | 4254 | 0.4503 | 0.2997 | 0.0505 |
0.0443 | 77.9910 | 4309 | 0.4552 | 0.3042 | 0.0517 |
0.0435 | 78.9864 | 4364 | 0.4646 | 0.2986 | 0.0505 |
0.0407 | 80.0 | 4420 | 0.4461 | 0.3075 | 0.0509 |
0.0396 | 80.9955 | 4475 | 0.4507 | 0.3031 | 0.0510 |
0.0401 | 81.9910 | 4530 | 0.4454 | 0.3023 | 0.0508 |
0.0352 | 82.9864 | 4585 | 0.4473 | 0.2991 | 0.0503 |
0.0328 | 84.0 | 4641 | 0.4550 | 0.3067 | 0.0515 |
0.037 | 84.9955 | 4696 | 0.4513 | 0.2971 | 0.0502 |
0.0358 | 85.9910 | 4751 | 0.4447 | 0.2955 | 0.0497 |
0.034 | 86.9864 | 4806 | 0.4504 | 0.2952 | 0.0496 |
0.0313 | 88.0 | 4862 | 0.4674 | 0.2965 | 0.0500 |
0.0269 | 88.9955 | 4917 | 0.4620 | 0.2967 | 0.0496 |
0.0304 | 89.9910 | 4972 | 0.4541 | 0.2927 | 0.0490 |
0.029 | 90.9864 | 5027 | 0.4503 | 0.2958 | 0.0492 |
0.0293 | 92.0 | 5083 | 0.4555 | 0.2935 | 0.0492 |
0.027 | 92.9955 | 5138 | 0.4598 | 0.2955 | 0.0491 |
0.0285 | 93.9910 | 5193 | 0.4629 | 0.2946 | 0.0492 |
0.0279 | 94.9864 | 5248 | 0.4582 | 0.2933 | 0.0490 |
0.0264 | 96.0 | 5304 | 0.4576 | 0.2916 | 0.0490 |
0.0258 | 96.9955 | 5359 | 0.4605 | 0.2933 | 0.0491 |
0.0247 | 97.9910 | 5414 | 0.4591 | 0.2948 | 0.0491 |
0.0226 | 98.9864 | 5469 | 0.4610 | 0.2952 | 0.0492 |
0.0226 | 99.5475 | 5500 | 0.4610 | 0.2945 | 0.0491 |
Base model
facebook/mms-300m