w2v-bert-2.0-real-250-synth-250-hausa-v0.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6923
- Wer: 0.1308
- Cer: 0.0385
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.4005 | 1.0 | 4324 | 0.3025 | 0.2770 | 0.0704 |
0.1588 | 2.0 | 8648 | 0.3274 | 0.3038 | 0.0763 |
0.1588 | 3.0 | 12972 | 0.2865 | 0.2555 | 0.0672 |
0.1494 | 4.0 | 17296 | 0.2799 | 0.2452 | 0.0645 |
0.142 | 5.0 | 21620 | 0.2884 | 0.2548 | 0.0675 |
0.1359 | 6.0 | 25944 | 0.2767 | 0.2436 | 0.0647 |
0.1301 | 7.0 | 30268 | 0.2626 | 0.2446 | 0.0653 |
0.1232 | 8.0 | 34592 | 0.2529 | 0.2322 | 0.0608 |
0.12 | 9.0 | 38916 | 0.2600 | 0.2351 | 0.0620 |
0.1158 | 10.0 | 43240 | 0.2742 | 0.2431 | 0.0644 |
0.1117 | 11.0 | 47564 | 0.2565 | 0.2297 | 0.0603 |
0.1078 | 12.0 | 51888 | 0.2568 | 0.2257 | 0.0595 |
0.1038 | 13.0 | 56212 | 0.2483 | 0.2285 | 0.0595 |
0.0993 | 14.0 | 60536 | 0.2427 | 0.2217 | 0.0577 |
0.0974 | 15.0 | 64860 | 0.2494 | 0.2229 | 0.0588 |
0.0936 | 16.0 | 69184 | 0.2465 | 0.2216 | 0.0585 |
0.0884 | 17.0 | 73508 | 0.2413 | 0.2139 | 0.0563 |
0.0837 | 18.0 | 77832 | 0.2489 | 0.2154 | 0.0566 |
0.0801 | 19.0 | 82156 | 0.2489 | 0.2124 | 0.0562 |
0.0753 | 20.0 | 86480 | 0.2446 | 0.2077 | 0.0550 |
0.071 | 21.0 | 90804 | 0.2480 | 0.2038 | 0.0542 |
0.067 | 22.0 | 95128 | 0.2475 | 0.2057 | 0.0548 |
0.0631 | 23.0 | 99452 | 0.2518 | 0.1970 | 0.0528 |
0.0577 | 24.0 | 103776 | 0.2663 | 0.1917 | 0.0510 |
0.0544 | 25.0 | 108100 | 0.2536 | 0.1919 | 0.0516 |
0.0499 | 26.0 | 112424 | 0.2642 | 0.1895 | 0.0513 |
0.0458 | 27.0 | 116748 | 0.2671 | 0.1799 | 0.0487 |
0.0425 | 28.0 | 121072 | 0.2808 | 0.1797 | 0.0491 |
0.0396 | 29.0 | 125396 | 0.2732 | 0.1853 | 0.0508 |
0.0375 | 30.0 | 129720 | 0.2822 | 0.1776 | 0.0485 |
0.0341 | 31.0 | 134044 | 0.3013 | 0.1720 | 0.0474 |
0.032 | 32.0 | 138368 | 0.2974 | 0.1753 | 0.0485 |
0.0289 | 33.0 | 142692 | 0.2989 | 0.1730 | 0.0481 |
0.0275 | 34.0 | 147016 | 0.3099 | 0.1709 | 0.0476 |
0.0252 | 35.0 | 151340 | 0.3063 | 0.1680 | 0.0471 |
0.0232 | 36.0 | 155664 | 0.3232 | 0.1684 | 0.0474 |
0.0218 | 37.0 | 159988 | 0.3440 | 0.1618 | 0.0455 |
0.0204 | 38.0 | 164312 | 0.3251 | 0.1637 | 0.0462 |
0.0187 | 39.0 | 168636 | 0.3395 | 0.1593 | 0.0449 |
0.0174 | 40.0 | 172960 | 0.3553 | 0.1595 | 0.0452 |
0.0163 | 41.0 | 177284 | 0.3417 | 0.1582 | 0.0448 |
0.0155 | 42.0 | 181608 | 0.3699 | 0.1552 | 0.0442 |
0.0144 | 43.0 | 185932 | 0.3698 | 0.1560 | 0.0443 |
0.0139 | 44.0 | 190256 | 0.3543 | 0.1574 | 0.0447 |
0.0125 | 45.0 | 194580 | 0.3713 | 0.1567 | 0.0448 |
0.0122 | 46.0 | 198904 | 0.3797 | 0.1515 | 0.0432 |
0.0111 | 47.0 | 203228 | 0.3836 | 0.1520 | 0.0436 |
0.0105 | 48.0 | 207552 | 0.3989 | 0.1486 | 0.0425 |
0.0097 | 49.0 | 211876 | 0.4116 | 0.1490 | 0.0427 |
0.0091 | 50.0 | 216200 | 0.3927 | 0.1479 | 0.0425 |
0.0088 | 51.0 | 220524 | 0.3921 | 0.1464 | 0.0422 |
0.0083 | 52.0 | 224848 | 0.4105 | 0.1518 | 0.0439 |
0.0077 | 53.0 | 229172 | 0.4117 | 0.1488 | 0.0427 |
0.0072 | 54.0 | 233496 | 0.4022 | 0.1517 | 0.0436 |
0.0068 | 55.0 | 237820 | 0.4175 | 0.1433 | 0.0415 |
0.0064 | 56.0 | 242144 | 0.4209 | 0.1459 | 0.0420 |
0.0062 | 57.0 | 246468 | 0.4381 | 0.1440 | 0.0416 |
0.0056 | 58.0 | 250792 | 0.4322 | 0.1434 | 0.0414 |
0.0054 | 59.0 | 255116 | 0.4287 | 0.1453 | 0.0421 |
0.0051 | 60.0 | 259440 | 0.4335 | 0.1433 | 0.0416 |
0.0048 | 61.0 | 263764 | 0.4541 | 0.1433 | 0.0415 |
0.0046 | 62.0 | 268088 | 0.4574 | 0.1427 | 0.0413 |
0.0042 | 63.0 | 272412 | 0.4478 | 0.1444 | 0.0418 |
0.004 | 64.0 | 276736 | 0.4769 | 0.1396 | 0.0407 |
0.0038 | 65.0 | 281060 | 0.4573 | 0.1444 | 0.0420 |
0.0036 | 66.0 | 285384 | 0.4657 | 0.1401 | 0.0408 |
0.0033 | 67.0 | 289708 | 0.4791 | 0.1422 | 0.0415 |
0.0033 | 68.0 | 294032 | 0.4793 | 0.1399 | 0.0407 |
0.003 | 69.0 | 298356 | 0.4883 | 0.1384 | 0.0404 |
0.0027 | 70.0 | 302680 | 0.4866 | 0.1386 | 0.0404 |
0.0026 | 71.0 | 307004 | 0.5008 | 0.1374 | 0.0402 |
0.0024 | 72.0 | 311328 | 0.5000 | 0.1398 | 0.0409 |
0.0023 | 73.0 | 315652 | 0.5073 | 0.1388 | 0.0407 |
0.002 | 74.0 | 319976 | 0.5455 | 0.1379 | 0.0401 |
0.002 | 75.0 | 324300 | 0.5289 | 0.1374 | 0.0401 |
0.0018 | 76.0 | 328624 | 0.5519 | 0.1347 | 0.0394 |
0.0017 | 77.0 | 332948 | 0.5298 | 0.1352 | 0.0394 |
0.0015 | 78.0 | 337272 | 0.5382 | 0.1363 | 0.0400 |
0.0015 | 79.0 | 341596 | 0.5173 | 0.1391 | 0.0405 |
0.0013 | 80.0 | 345920 | 0.5414 | 0.1349 | 0.0395 |
0.0012 | 81.0 | 350244 | 0.5724 | 0.1352 | 0.0396 |
0.0011 | 82.0 | 354568 | 0.5710 | 0.1353 | 0.0396 |
0.0009 | 83.0 | 358892 | 0.6018 | 0.1328 | 0.0388 |
0.0009 | 84.0 | 363216 | 0.5961 | 0.1325 | 0.0389 |
0.0008 | 85.0 | 367540 | 0.6118 | 0.1328 | 0.0389 |
0.0007 | 86.0 | 371864 | 0.5842 | 0.1321 | 0.0386 |
0.0007 | 87.0 | 376188 | 0.6197 | 0.1315 | 0.0385 |
0.0006 | 88.0 | 380512 | 0.6307 | 0.1322 | 0.0388 |
0.0005 | 89.0 | 384836 | 0.6503 | 0.1322 | 0.0386 |
0.0004 | 90.0 | 389160 | 0.6500 | 0.1325 | 0.0389 |
0.0003 | 91.0 | 393484 | 0.6967 | 0.1312 | 0.0385 |
0.0003 | 92.0 | 397808 | 0.6835 | 0.1315 | 0.0387 |
0.0002 | 93.0 | 402132 | 0.6923 | 0.1308 | 0.0385 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for asr-africa/w2v-bert-2.0-real-250-synth-250-hausa-v0.0
Base model
facebook/w2v-bert-2.0