distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6492
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2305 1.0 200 2.1948 0.37
1.8318 2.0 400 1.7088 0.555
1.44 3.0 600 1.3910 0.565
1.0672 4.0 800 1.0886 0.725
0.6987 5.0 1000 1.0055 0.72
0.6847 6.0 1200 0.8528 0.755
0.8731 7.0 1400 0.7888 0.78
0.7602 8.0 1600 0.6399 0.81
0.4625 9.0 1800 0.6973 0.795
0.1884 10.0 2000 0.6347 0.815
0.0945 11.0 2200 0.6723 0.805
0.0334 12.0 2400 0.7025 0.815
0.2925 13.0 2600 0.5688 0.835
0.0322 14.0 2800 0.5742 0.845
0.0166 15.0 3000 0.5655 0.86
0.1173 16.0 3200 0.5723 0.855
0.0223 17.0 3400 0.6601 0.83
0.0103 18.0 3600 0.6294 0.835
0.0096 19.0 3800 0.6413 0.835
0.0093 20.0 4000 0.6492 0.84

Framework versions

  • Transformers 4.52.0.dev0
  • Pytorch 2.8.0.dev20250404+cu128
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for atharva98/distilhubert-finetuned-gtzan-increased-accuracy

Finetuned
(474)
this model

Dataset used to train atharva98/distilhubert-finetuned-gtzan-increased-accuracy

Evaluation results