Improve language tag
#1
by
lbourdois
- opened
README.md
CHANGED
@@ -1,63 +1,74 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- allenai/MADLAD-400
|
5 |
+
language:
|
6 |
+
- zho
|
7 |
+
- eng
|
8 |
+
- fra
|
9 |
+
- spa
|
10 |
+
- por
|
11 |
+
- deu
|
12 |
+
- ita
|
13 |
+
- rus
|
14 |
+
- jpn
|
15 |
+
- kor
|
16 |
+
- vie
|
17 |
+
- tha
|
18 |
+
- ara
|
19 |
+
base_model:
|
20 |
+
- Qwen/Qwen2.5-7B-Instruct
|
21 |
+
library_name: transformers
|
22 |
+
---
|
23 |
+
# Qwen2.5 7B Instruct for Bengali: Vocabulary expansion
|
24 |
+
|
25 |
+
This model is built on top of Qwen2.5 7B Instruct adapted for Bengali using 500M target language tokens sampled from MADLAD-400. It has an additional target vocabulary of 10K.
|
26 |
+
|
27 |
+
## Model Details
|
28 |
+
|
29 |
+
* **Vocabulary**: This model has an additional target vocabulary of 10K.
|
30 |
+
* **Target vocabulary initialization**: The target weights of the embedding and LM head were initialized using mean initialization.
|
31 |
+
* **Training**: This model was continually pre-trained on 500M target language tokens sampled from MADLAD-400.
|
32 |
+
|
33 |
+
|
34 |
+
## Model Description
|
35 |
+
|
36 |
+
- **Language:** Bengali
|
37 |
+
- **License:** Apache 2.0
|
38 |
+
- **Fine-tuned from model:** Qwen/Qwen2.5-7B-Instruct
|
39 |
+
|
40 |
+
|
41 |
+
## Model Sources
|
42 |
+
|
43 |
+
- **Repository:** https://github.com/gucci-j/chat-cve
|
44 |
+
- **Paper:** https://arxiv.org/abs/2412.11704
|
45 |
+
|
46 |
+
|
47 |
+
## How to Get Started with the Model
|
48 |
+
Use the code below to get started with the model.
|
49 |
+
```python
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
+
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
53 |
+
"atsuki-yamaguchi/Qwen2.5-7B-Instruct-bn-madlad-mean-tuned"
|
54 |
+
)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
56 |
+
"atsuki-yamaguchi/Qwen2.5-7B-Instruct-bn-madlad-mean-tuned"
|
57 |
+
)
|
58 |
+
```
|
59 |
+
|
60 |
+
|
61 |
+
## Citation
|
62 |
+
```
|
63 |
+
@misc{yamaguchi2024vocabularyexpansionchatmodels,
|
64 |
+
title={{ElChat}: Adapting Chat Language Models Using Only Target Unlabeled Language Data},
|
65 |
+
author={Atsuki Yamaguchi and Terufumi Morishita and Aline Villavicencio and Nikolaos Aletras},
|
66 |
+
year={2024},
|
67 |
+
eprint={2412.11704},
|
68 |
+
archivePrefix={arXiv},
|
69 |
+
primaryClass={cs.CL},
|
70 |
+
url={https://arxiv.org/abs/2412.11704},
|
71 |
+
}
|
72 |
+
```
|
73 |
+
|
74 |
+
|