libCap_prBERTbfd_clf
This model is a fine-tuned version of Rostlab/prot_bert_bfd on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5197
- Accuracy: 0.7457
- F1: 0.7940
- Precision: 0.7567
- Recall: 0.8352
- Auroc: 0.7268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc |
---|---|---|---|---|---|---|---|---|
No log | 0.98 | 34 | 0.6393 | 0.6396 | 0.7053 | 0.6782 | 0.7345 | 0.6197 |
No log | 1.98 | 68 | 0.5713 | 0.6962 | 0.7499 | 0.7256 | 0.7759 | 0.6795 |
No log | 2.98 | 102 | 0.5652 | 0.7126 | 0.7388 | 0.7918 | 0.6924 | 0.7168 |
No log | 3.98 | 136 | 0.5360 | 0.7330 | 0.7896 | 0.7345 | 0.8536 | 0.7076 |
No log | 4.98 | 170 | 0.5223 | 0.7423 | 0.7830 | 0.7740 | 0.7921 | 0.7318 |
No log | 5.98 | 204 | 0.5180 | 0.7454 | 0.7882 | 0.7699 | 0.8075 | 0.7323 |
No log | 6.98 | 238 | 0.5179 | 0.7440 | 0.7934 | 0.7537 | 0.8376 | 0.7243 |
No log | 7.98 | 272 | 0.5197 | 0.7457 | 0.7940 | 0.7567 | 0.8352 | 0.7268 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.