Edit model card

protBERTbfd_AAV2_regressor

This model is a fine-tuned version of Rostlab/prot_bert_bfd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0327
  • Mse: 0.0327
  • Rmse: 0.1808
  • Mae: 0.0618
  • R2: 0.8691
  • Smape: 101.2324

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Mse Rmse Mae R2 Smape
No log 1.0 58 0.0985 0.0985 0.3138 0.1707 0.6057 102.5806
No log 2.0 116 0.0689 0.0689 0.2625 0.1432 0.7242 112.9846
No log 3.0 174 0.0400 0.0400 0.1999 0.0859 0.8399 102.6132
No log 4.0 232 0.0402 0.0402 0.2005 0.0745 0.8389 103.3228
No log 5.0 290 0.0337 0.0337 0.1836 0.0665 0.8650 101.0925
No log 6.0 348 0.0327 0.0327 0.1808 0.0618 0.8691 101.2324

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.