MNLP M3 MCQA Merged Model

This model is a merged version of:

  • Base SFT Model: AnnaelleMyriam/SFT_M3_model
  • LoRA Adapter: aymanbakiri/MNLP_M3_mcqa_anti_overfit_emergency

Model Description

This is a specialized model for Multiple Choice Question Answering (MCQA) tasks, created by:

  1. Starting with the SFT model AnnaelleMyriam/SFT_M3_model
  2. Fine-tuning with LoRA adapters on MCQA data
  3. Merging the LoRA weights back into the base model

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("aymanbakiri/MNLP_M3_mcqa_anti_overfit_emergency_full")
tokenizer = AutoTokenizer.from_pretrained("aymanbakiri/MNLP_M3_mcqa_anti_overfit_emergency_full")

# Example usage for MCQA
prompt = """Question: What is the capital of France?
Options: (A) London (B) Berlin (C) Paris (D) Madrid
Answer:"""

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=5)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer)

Training Details

  • Base Model: SFT model fine-tuned for instruction following
  • LoRA Configuration: r=16, alpha=32, dropout=0.1
  • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head
  • Training Data: MNLP M2 MCQA Dataset

Performance

This merged model should provide better performance than the original LoRA adapter while being easier to deploy and use.

Downloads last month
18
Safetensors
Model size
596M params
Tensor type
BF16
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for aymanbakiri/MNLP_M3_mcqa_anti_overfit_emergency_full

Adapter
(9)
this model