MNLP_M3_mcqa_dpo_model
This model is a fine-tuned version of AnnaelleMyriam/MNLP_M3_sft_dpo_1024_beta0.5_2e-5_FINAL_v3_16_check1500 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3494
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.541 | 0.0811 | 150 | 0.4871 |
0.3978 | 0.1622 | 300 | 0.4650 |
0.4109 | 0.2433 | 450 | 0.4297 |
0.4848 | 0.3244 | 600 | 0.4074 |
0.4588 | 0.4055 | 750 | 0.3867 |
0.4039 | 0.4866 | 900 | 0.3828 |
0.3221 | 0.5677 | 1050 | 0.4007 |
0.3642 | 0.6488 | 1200 | 0.3854 |
0.3558 | 0.7299 | 1350 | 0.4022 |
0.3155 | 0.8110 | 1500 | 0.3775 |
0.4315 | 0.8921 | 1650 | 0.3692 |
0.3845 | 0.9732 | 1800 | 0.3586 |
0.4821 | 1.0541 | 1950 | 0.3639 |
0.3883 | 1.1352 | 2100 | 0.3683 |
0.3996 | 1.2163 | 2250 | 0.3670 |
0.4104 | 1.2974 | 2400 | 0.3365 |
0.4321 | 1.3785 | 2550 | 0.3496 |
0.3271 | 1.4596 | 2700 | 0.3394 |
0.3327 | 1.5407 | 2850 | 0.3544 |
0.2663 | 1.6218 | 3000 | 0.3632 |
0.5097 | 1.7029 | 3150 | 0.3435 |
0.4855 | 1.7840 | 3300 | 0.3344 |
0.1663 | 1.8651 | 3450 | 0.3521 |
0.3408 | 1.9462 | 3600 | 0.3551 |
0.2752 | 2.0270 | 3750 | 0.3448 |
0.4994 | 2.1081 | 3900 | 0.3552 |
0.4012 | 2.1892 | 4050 | 0.3537 |
0.1766 | 2.2703 | 4200 | 0.3596 |
0.3081 | 2.3514 | 4350 | 0.3584 |
0.2448 | 2.4325 | 4500 | 0.3595 |
0.3791 | 2.5137 | 4650 | 0.3547 |
0.3062 | 2.5948 | 4800 | 0.3501 |
0.2908 | 2.6759 | 4950 | 0.3472 |
0.3918 | 2.7570 | 5100 | 0.3470 |
0.3629 | 2.8381 | 5250 | 0.3479 |
0.2431 | 2.9192 | 5400 | 0.3487 |
0.1877 | 3.0 | 5550 | 0.3494 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 66
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support