MNLP_M3_mcqa_sft_model

This model is a fine-tuned version of AnnaelleMyriam/SFT_M3_model on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
0.3535 0.1352 250 0.4926
0.4864 0.2703 500 0.3696
0.342 0.4055 750 0.3518
0.3763 0.5407 1000 0.3259
0.3566 0.6759 1250 0.3335
0.2901 0.8110 1500 0.3195
0.3235 0.9462 1750 0.3060
0.2315 1.0811 2000 0.3930
0.2842 1.2163 2250 0.3920
0.2183 1.3514 2500 0.3796
0.1824 1.4866 2750 0.3979
0.1877 1.6218 3000 0.4335
0.1821 1.7570 3250 0.3981
0.2364 1.8921 3500 0.3922
0.1339 2.0270 3750 0.4119
0.1073 2.1622 4000 0.5467
0.0722 2.2974 4250 0.5596
0.113 2.4325 4500 0.5158
0.1467 2.5677 4750 0.4852
0.1675 2.7029 5000 0.5103
0.101 2.8381 5250 0.5661
0.1935 2.9732 5500 0.4946
0.1069 3.1081 5750 0.5844
0.0799 3.2433 6000 0.5681
0.0803 3.3785 6250 0.5795
0.0744 3.5137 6500 0.5935
0.0464 3.6488 6750 0.6010
0.0643 3.7840 7000 0.6009
0.0871 3.9192 7250 0.5993

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
56
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for aymanbakiri/MNLP_M3_mcqa_sft_model

Adapter
(9)
this model