PyLate model based on nreimers/MiniLM-L6-H384-uncased

This is a PyLate model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: nreimers/MiniLM-L6-H384-uncased
  • Document Length: 180 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 128 tokens
  • Similarity Function: MaxSim

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 31, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=ayushexel/colbert-MiniLM-L6-H384-uncased-1-neg-1-epoch-gooaq-1995000,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=ayushexel/colbert-MiniLM-L6-H384-uncased-1-neg-1-epoch-gooaq-1995000,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Col BERTTriplet

  • Evaluated with pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric Value
accuracy 0.3738

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,893,949 training samples
  • Columns: question, answer, and negative
  • Approximate statistics based on the first 1000 samples:
    question answer negative
    type string string string
    details
    • min: 9 tokens
    • mean: 12.73 tokens
    • max: 23 tokens
    • min: 14 tokens
    • mean: 31.78 tokens
    • max: 32 tokens
    • min: 16 tokens
    • mean: 31.7 tokens
    • max: 32 tokens
  • Samples:
    question answer negative
    how do i import photos from iphone onto mac? ['Open the Photos app.', 'Connect your iPhone to Mac using a USB cable.', 'In the upper menu of the Photos app, choose Import.', 'Here you will see all the photos your iPhone has.', 'To import all photos, click Import all new photos on the upper-right corner of the window.'] Import to your Mac Connect your iPhone, iPad, or iPod touch to your Mac with a USB cable. Open the Photos app. The Photos app shows an Import screen with all the photos and videos that are on your connected device. If the Import screen doesn't automatically appear, click the device's name in the Photos sidebar.
    what are hyperplastic colon polyps? A hyperplastic polyp is a growth of extra cells that projects out from tissues inside your body. They occur in areas where your body has repaired damaged tissue, especially along your digestive tract. Hyperplastic colorectal polyps happen in your colon, the lining of your large intestine. During the colonoscopy, it's hard to differentiate between the benign hyperplastic and the more worrisome adenomatous polyp. Polyps appear as lumps inside the colon. Some are flat and others hang down from a stalk. Each polyp is biopsied and tissue from the polyp is sent to a lab and tested for cancer.
    what are the flaws of the electoral college quizlet? ['the winner of the popular vote is not guaranteed the presidency. ... ', 'electors are not required to vote in accord with the popular vote. ... ', 'any election might have to be decided in the HOR. ... ', 'small states are overrepresented- they have more electoral votes per a smaller amount of people than larger states.'] In other U.S. elections, candidates are elected directly by popular vote. But the president and vice president are not elected directly by citizens. Instead, they're chosen by “electors” through a process called the Electoral College. ... It was a compromise between a popular vote by citizens and a vote in Congress.
  • Loss: pylate.losses.contrastive.Contrastive

Evaluation Dataset

Unnamed Dataset

  • Size: 5,000 evaluation samples
  • Columns: question, answer, and negative_1
  • Approximate statistics based on the first 1000 samples:
    question answer negative_1
    type string string string
    details
    • min: 9 tokens
    • mean: 12.84 tokens
    • max: 23 tokens
    • min: 18 tokens
    • mean: 31.77 tokens
    • max: 32 tokens
    • min: 15 tokens
    • mean: 31.47 tokens
    • max: 32 tokens
  • Samples:
    question answer negative_1
    1 cup how many grams of flour? A cup of all-purpose flour weighs 4 1/4 ounces or 120 grams. This chart is a quick reference for volume, ounces, and grams equivalencies for common ingredients. Convert 25 grams or g of flour to cups. 25 grams flour equals 1/4 cup.
    is lasker rink owned by trump? Lasker Rink was announced in 1962 and completed in 1966. It has been operated by The Trump Organization since 1987. In 2018, the city announced that the rink would be closed and rebuilt between 2021 and 2024. Lasker Rink was announced in 1962 and completed in 1966. It has been operated by The Trump Organization since 1987. In 2018, the city announced that the rink would be closed and rebuilt between 2021 and 2024.
    how many litres of water to drink a day for weight loss? Bottom Line: According to the studies, 1–2 liters of water per day is enough to assist with weight loss, especially when consumed before meals. Based on the studies, drinking 1-2 liters of water per day should be sufficient to help with weight loss. Here's how much water you should drink, in different measurements: Liters: 1–2.
  • Loss: pylate.losses.contrastive.Contrastive

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 3e-06
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • dataloader_num_workers: 12
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 12
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss accuracy
0 0 - 0.3738
0.0001 1 9.8144 -
0.0135 200 8.6046 -
0.0270 400 6.3812 -
0.0405 600 4.0823 -
0.0541 800 2.3103 -
0.0676 1000 1.7525 -
0.0811 1200 1.4658 -
0.0946 1400 1.2898 -
0.1081 1600 1.1659 -
0.1216 1800 1.0575 -
0.1352 2000 1.0146 -
0.1487 2200 0.9502 -
0.1622 2400 0.9233 -
0.1757 2600 0.8957 -
0.1892 2800 0.8514 -
0.2027 3000 0.8499 -
0.2163 3200 0.8311 -
0.2298 3400 0.8007 -
0.2433 3600 0.787 -
0.2568 3800 0.7648 -
0.2703 4000 0.7538 -
0.2838 4200 0.7373 -
0.2974 4400 0.732 -
0.3109 4600 0.7335 -
0.3244 4800 0.7084 -
0.3379 5000 0.7109 -
0.3514 5200 0.7091 -
0.3649 5400 0.691 -
0.3785 5600 0.6814 -
0.3920 5800 0.6817 -
0.4055 6000 0.6694 -
0.4190 6200 0.6602 -
0.4325 6400 0.6594 -
0.4460 6600 0.6526 -
0.4596 6800 0.6433 -
0.4731 7000 0.6378 -
0.4866 7200 0.6362 -
0.5001 7400 0.6273 -
0.5136 7600 0.6293 -
0.5271 7800 0.6198 -
0.5407 8000 0.6166 -
0.5542 8200 0.6194 -
0.5677 8400 0.618 -
0.5812 8600 0.6109 -
0.5947 8800 0.6145 -
0.6082 9000 0.598 -
0.6217 9200 0.5982 -
0.6353 9400 0.5989 -
0.6488 9600 0.5926 -
0.6623 9800 0.5956 -
0.6758 10000 0.597 -
0.6893 10200 0.5803 -
0.7028 10400 0.5889 -
0.7164 10600 0.5907 -
0.7299 10800 0.5904 -
0.7434 11000 0.5857 -
0.7569 11200 0.5825 -
0.7704 11400 0.5825 -
0.7839 11600 0.5786 -
0.7975 11800 0.5797 -
0.8110 12000 0.5746 -
0.8245 12200 0.577 -
0.8380 12400 0.5765 -
0.8515 12600 0.5803 -
0.8650 12800 0.5671 -
0.8786 13000 0.5716 -
0.8921 13200 0.5822 -
0.9056 13400 0.5806 -
0.9191 13600 0.5734 -
0.9326 13800 0.578 -
0.9461 14000 0.569 -
0.9597 14200 0.5637 -
0.9732 14400 0.5777 -
0.9867 14600 0.5653 -

Framework Versions

  • Python: 3.11.0
  • Sentence Transformers: 4.0.1
  • PyLate: 1.1.7
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
4
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ayushexel/colbert-MiniLM-L6-H384-uncased-1-neg-1-epoch-gooaq-1995000

Finetuned
(13)
this model

Evaluation results