File size: 24,322 Bytes
e837e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
---
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1893949
- loss:Contrastive
base_model: nreimers/MiniLM-L6-H384-uncased
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- accuracy
model-index:
- name: PyLate model based on nreimers/MiniLM-L6-H384-uncased
  results:
  - task:
      type: col-berttriplet
      name: Col BERTTriplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: accuracy
      value: 0.37379997968673706
      name: Accuracy
---

# PyLate model based on nreimers/MiniLM-L6-H384-uncased

This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

## Model Details

### Model Description
- **Model Type:** PyLate model
- **Base model:** [nreimers/MiniLM-L6-H384-uncased](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) <!-- at revision 3276f0fac9d818781d7a1327b3ff818fc4e643c0 -->
- **Document Length:** 180 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)

### Full Model Architecture

```
ColBERT(
  (0): Transformer({'max_seq_length': 31, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Usage
First install the PyLate library:

```bash
pip install -U pylate
```

### Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

#### Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

```python
from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=ayushexel/colbert-MiniLM-L6-H384-uncased-1-neg-1-epoch-gooaq-1995000,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)
```

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)
```

#### Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)
```

### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

```python
from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=ayushexel/colbert-MiniLM-L6-H384-uncased-1-neg-1-epoch-gooaq-1995000,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Col BERTTriplet

* Evaluated with <code>pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator</code>

| Metric       | Value      |
|:-------------|:-----------|
| **accuracy** | **0.3738** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,893,949 training samples
* Columns: <code>question</code>, <code>answer</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                             | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 12.73 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.78 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 31.7 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
  | question                                                          | answer                                                                                                                                                                                                                                                                                                                                             | negative                                                                                                                                                                                                                                                                                                                                   |
  |:------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i import photos from iphone onto mac?</code>         | <code>['Open the Photos app.', 'Connect your iPhone to Mac using a USB cable.', 'In the upper menu of the Photos app, choose Import.', 'Here you will see all the photos your iPhone has.', 'To import all photos, click Import all new photos on the upper-right corner of the window.']</code>                                                   | <code>Import to your Mac Connect your iPhone, iPad, or iPod touch to your Mac with a USB cable. Open the Photos app. The Photos app shows an Import screen with all the photos and videos that are on your connected device. If the Import screen doesn't automatically appear, click the device's name in the Photos sidebar.</code>      |
  | <code>what are hyperplastic colon polyps?</code>                  | <code>A hyperplastic polyp is a growth of extra cells that projects out from tissues inside your body. They occur in areas where your body has repaired damaged tissue, especially along your digestive tract. Hyperplastic colorectal polyps happen in your colon, the lining of your large intestine.</code>                                     | <code>During the colonoscopy, it's hard to differentiate between the benign hyperplastic and the more worrisome adenomatous polyp. Polyps appear as lumps inside the colon. Some are flat and others hang down from a stalk. Each polyp is biopsied and tissue from the polyp is sent to a lab and tested for cancer.</code>               |
  | <code>what are the flaws of the electoral college quizlet?</code> | <code>['the winner of the popular vote is not guaranteed the presidency. ... ', 'electors are not required to vote in accord with the popular vote. ... ', 'any election might have to be decided in the HOR. ... ', 'small states are overrepresented- they have more electoral votes per a smaller amount of people than larger states.']</code> | <code>In other U.S. elections, candidates are elected directly by popular vote. But the president and vice president are not elected directly by citizens. Instead, they're chosen by “electors” through a process called the Electoral College. ... It was a compromise between a popular vote by citizens and a vote in Congress.</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>

### Evaluation Dataset

#### Unnamed Dataset


* Size: 5,000 evaluation samples
* Columns: <code>question</code>, <code>answer</code>, and <code>negative_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                             | negative_1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 12.84 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 31.77 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 31.47 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
  | question                                                              | answer                                                                                                                                                                                                                        | negative_1                                                                                                                                                                                                                    |
  |:----------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>1 cup how many grams of flour?</code>                           | <code>A cup of all-purpose flour weighs 4 1/4 ounces or 120 grams. This chart is a quick reference for volume, ounces, and grams equivalencies for common ingredients.</code>                                                 | <code>Convert 25 grams or g of flour to cups. 25 grams flour equals 1/4 cup.</code>                                                                                                                                           |
  | <code>is lasker rink owned by trump?</code>                           | <code>Lasker Rink was announced in 1962 and completed in 1966. It has been operated by The Trump Organization since 1987. In 2018, the city announced that the rink would be closed and rebuilt between 2021 and 2024.</code> | <code>Lasker Rink was announced in 1962 and completed in 1966. It has been operated by The Trump Organization since 1987. In 2018, the city announced that the rink would be closed and rebuilt between 2021 and 2024.</code> |
  | <code>how many litres of water to drink a day for weight loss?</code> | <code>Bottom Line: According to the studies, 1–2 liters of water per day is enough to assist with weight loss, especially when consumed before meals.</code>                                                                  | <code>Based on the studies, drinking 1-2 liters of water per day should be sufficient to help with weight loss. Here's how much water you should drink, in different measurements: Liters: 1–2.</code>                        |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 3e-06
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 12
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 12
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step  | Training Loss | accuracy |
|:------:|:-----:|:-------------:|:--------:|
| 0      | 0     | -             | 0.3738   |
| 0.0001 | 1     | 9.8144        | -        |
| 0.0135 | 200   | 8.6046        | -        |
| 0.0270 | 400   | 6.3812        | -        |
| 0.0405 | 600   | 4.0823        | -        |
| 0.0541 | 800   | 2.3103        | -        |
| 0.0676 | 1000  | 1.7525        | -        |
| 0.0811 | 1200  | 1.4658        | -        |
| 0.0946 | 1400  | 1.2898        | -        |
| 0.1081 | 1600  | 1.1659        | -        |
| 0.1216 | 1800  | 1.0575        | -        |
| 0.1352 | 2000  | 1.0146        | -        |
| 0.1487 | 2200  | 0.9502        | -        |
| 0.1622 | 2400  | 0.9233        | -        |
| 0.1757 | 2600  | 0.8957        | -        |
| 0.1892 | 2800  | 0.8514        | -        |
| 0.2027 | 3000  | 0.8499        | -        |
| 0.2163 | 3200  | 0.8311        | -        |
| 0.2298 | 3400  | 0.8007        | -        |
| 0.2433 | 3600  | 0.787         | -        |
| 0.2568 | 3800  | 0.7648        | -        |
| 0.2703 | 4000  | 0.7538        | -        |
| 0.2838 | 4200  | 0.7373        | -        |
| 0.2974 | 4400  | 0.732         | -        |
| 0.3109 | 4600  | 0.7335        | -        |
| 0.3244 | 4800  | 0.7084        | -        |
| 0.3379 | 5000  | 0.7109        | -        |
| 0.3514 | 5200  | 0.7091        | -        |
| 0.3649 | 5400  | 0.691         | -        |
| 0.3785 | 5600  | 0.6814        | -        |
| 0.3920 | 5800  | 0.6817        | -        |
| 0.4055 | 6000  | 0.6694        | -        |
| 0.4190 | 6200  | 0.6602        | -        |
| 0.4325 | 6400  | 0.6594        | -        |
| 0.4460 | 6600  | 0.6526        | -        |
| 0.4596 | 6800  | 0.6433        | -        |
| 0.4731 | 7000  | 0.6378        | -        |
| 0.4866 | 7200  | 0.6362        | -        |
| 0.5001 | 7400  | 0.6273        | -        |
| 0.5136 | 7600  | 0.6293        | -        |
| 0.5271 | 7800  | 0.6198        | -        |
| 0.5407 | 8000  | 0.6166        | -        |
| 0.5542 | 8200  | 0.6194        | -        |
| 0.5677 | 8400  | 0.618         | -        |
| 0.5812 | 8600  | 0.6109        | -        |
| 0.5947 | 8800  | 0.6145        | -        |
| 0.6082 | 9000  | 0.598         | -        |
| 0.6217 | 9200  | 0.5982        | -        |
| 0.6353 | 9400  | 0.5989        | -        |
| 0.6488 | 9600  | 0.5926        | -        |
| 0.6623 | 9800  | 0.5956        | -        |
| 0.6758 | 10000 | 0.597         | -        |
| 0.6893 | 10200 | 0.5803        | -        |
| 0.7028 | 10400 | 0.5889        | -        |
| 0.7164 | 10600 | 0.5907        | -        |
| 0.7299 | 10800 | 0.5904        | -        |
| 0.7434 | 11000 | 0.5857        | -        |
| 0.7569 | 11200 | 0.5825        | -        |
| 0.7704 | 11400 | 0.5825        | -        |
| 0.7839 | 11600 | 0.5786        | -        |
| 0.7975 | 11800 | 0.5797        | -        |
| 0.8110 | 12000 | 0.5746        | -        |
| 0.8245 | 12200 | 0.577         | -        |
| 0.8380 | 12400 | 0.5765        | -        |
| 0.8515 | 12600 | 0.5803        | -        |
| 0.8650 | 12800 | 0.5671        | -        |
| 0.8786 | 13000 | 0.5716        | -        |
| 0.8921 | 13200 | 0.5822        | -        |
| 0.9056 | 13400 | 0.5806        | -        |
| 0.9191 | 13600 | 0.5734        | -        |
| 0.9326 | 13800 | 0.578         | -        |
| 0.9461 | 14000 | 0.569         | -        |
| 0.9597 | 14200 | 0.5637        | -        |
| 0.9732 | 14400 | 0.5777        | -        |
| 0.9867 | 14600 | 0.5653        | -        |


### Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- PyLate: 1.1.7
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1


## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}
```

#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->