PyLate model based on nreimers/MiniLM-L6-H384-uncased
This is a PyLate model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: nreimers/MiniLM-L6-H384-uncased
- Document Length: 180 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel
(1): Dense({'in_features': 384, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=ayushexel/colbert-MiniLM-L6-H384-uncased-3-neg-1-epoch-gooaq-1995000,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=ayushexel/colbert-MiniLM-L6-H384-uncased-3-neg-1-epoch-gooaq-1995000,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Col BERTTriplet
- Evaluated with
pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric | Value |
---|---|
accuracy | 0.4774 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,679,484 training samples
- Columns:
question
,answer
, andnegative
- Approximate statistics based on the first 1000 samples:
question answer negative type string string string details - min: 9 tokens
- mean: 12.97 tokens
- max: 21 tokens
- min: 20 tokens
- mean: 31.84 tokens
- max: 32 tokens
- min: 16 tokens
- mean: 31.64 tokens
- max: 32 tokens
- Samples:
question answer negative can i use bluetooth headphones for xbox one?
Headsets cannot be connected to any third party wireless controller. Headsets need to be connected to the Xbox one controller in order to function. The Xbox one console doesn't have a Bluetooth feature. Hence the headsets cannot be connected via Bluetooth.
You can connect Bluetooth headphones to a PS4, but only if they are compatible with the PS4. Most standard Bluetooth headphones are not compatible with the PS4, so you will need to make sure you have Bluetooth headphones that are specifically geared to the PS4.
can i use bluetooth headphones for xbox one?
Headsets cannot be connected to any third party wireless controller. Headsets need to be connected to the Xbox one controller in order to function. The Xbox one console doesn't have a Bluetooth feature. Hence the headsets cannot be connected via Bluetooth.
Summary – how to pair Sony Bluetooth headphones Tap and hold the Power button on the headphones for 7 seconds to put your Sony Bluetooth headphones into pairing mode. Tap the Settings icon on your iPhone. Select the Bluetooth option. Select your headphones from the list of devices, then wait for it to say “Connected.”
can i use bluetooth headphones for xbox one?
Headsets cannot be connected to any third party wireless controller. Headsets need to be connected to the Xbox one controller in order to function. The Xbox one console doesn't have a Bluetooth feature. Hence the headsets cannot be connected via Bluetooth.
You can only pair one Bluetooth headphone or soundbar and one other Bluetooth device to the TV at the same time, but not two Bluetooth headphones or soundbars at the same time.
- Loss:
pylate.losses.contrastive.Contrastive
Evaluation Dataset
Unnamed Dataset
- Size: 5,000 evaluation samples
- Columns:
question
,answer
, andnegative_1
- Approximate statistics based on the first 1000 samples:
question answer negative_1 type string string string details - min: 9 tokens
- mean: 12.83 tokens
- max: 23 tokens
- min: 13 tokens
- mean: 31.71 tokens
- max: 32 tokens
- min: 11 tokens
- mean: 31.37 tokens
- max: 32 tokens
- Samples:
question answer negative_1 what is controlled by the peripheral nervous system?
The efferent nerves of the somatic nervous system of the PNS is responsible for voluntary, conscious control of skeletal muscles (effector organ) using motor (efferent) nerves. The efferent nerves of the autonomic (visceral) nervous system control the visceral functions of the body.
Which of the following is not a part of peripheral nervous system? Explanation: Peripheral nervous system lies outside the brain and spinal cord. Spinal cord is not a part of peripheral nervous system.
is cold water good to drink in the morning?
This is probably because drinking cold water makes it easier for your body to maintain a lower core temperature. Drinking plain water, no matter the temperature, has been proven to give your body more energy throughout the day.
What Are Benefits of It Cold? Drinking water cold is beneficial because it tastes better and you are more likely to drink more of it. Cold lemon water tastes delicious and so you are more likely to drink more of it.
how to get rid of fungal nail quickly?
According to a 2016 review, thymol has antifungal and antibacterial properties. To treat toenail fungus, apply oregano oil to the affected nail twice daily with a cotton swab. Some people use oregano oil and tea tree oil together.
With treatment, many people can get rid of nail fungus. Even when the fungus clears, your nail(s) may look unhealthy until the infected nail grows out. A fingernail grows out in 4 to 6 months and a toenail in 12 to 18 months.
- Loss:
pylate.losses.contrastive.Contrastive
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 3e-06num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 12load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 12dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | accuracy |
---|---|---|---|---|
0 | 0 | - | - | 0.3568 |
0.0000 | 1 | 10.0066 | - | - |
0.0045 | 200 | 9.562 | - | - |
0.0090 | 400 | 8.6749 | - | - |
0.0135 | 600 | 6.7475 | - | - |
0.0180 | 800 | 4.9203 | - | - |
0.0225 | 1000 | 3.4444 | - | - |
0.0270 | 1200 | 2.5604 | - | - |
0.0316 | 1400 | 2.1878 | - | - |
0.0361 | 1600 | 1.9166 | - | - |
0.0406 | 1800 | 1.7376 | - | - |
0.0451 | 2000 | 1.5786 | - | - |
0.0496 | 2200 | 1.4304 | - | - |
0.0541 | 2400 | 1.3307 | - | - |
0.0586 | 2600 | 1.2409 | - | - |
0.0631 | 2800 | 1.1913 | - | - |
0.0676 | 3000 | 1.0885 | - | - |
0.0721 | 3200 | 1.0439 | - | - |
0.0766 | 3400 | 0.9721 | - | - |
0.0811 | 3600 | 0.918 | - | - |
0.0856 | 3800 | 0.8688 | - | - |
0.0901 | 4000 | 0.8269 | - | - |
0.0947 | 4200 | 0.7815 | - | - |
0.0992 | 4400 | 0.7577 | - | - |
0.1037 | 4600 | 0.714 | - | - |
0.1082 | 4800 | 0.6923 | - | - |
0.1127 | 5000 | 0.6619 | - | - |
0.1172 | 5200 | 0.6409 | - | - |
0.1217 | 5400 | 0.6142 | - | - |
0.1262 | 5600 | 0.6163 | - | - |
0.1307 | 5800 | 0.5821 | - | - |
0.1352 | 6000 | 0.5822 | - | - |
0.1397 | 6200 | 0.5572 | - | - |
0.1442 | 6400 | 0.555 | - | - |
0.1487 | 6600 | 0.5392 | - | - |
0.1533 | 6800 | 0.5326 | - | - |
0.1578 | 7000 | 0.5185 | - | - |
0.1623 | 7200 | 0.507 | - | - |
0.1668 | 7400 | 0.4943 | - | - |
0.1713 | 7600 | 0.4915 | - | - |
0.1758 | 7800 | 0.4951 | - | - |
0.1803 | 8000 | 0.4806 | - | - |
0.1848 | 8200 | 0.4782 | - | - |
0.1893 | 8400 | 0.4719 | - | - |
0.1938 | 8600 | 0.4628 | - | - |
0.1983 | 8800 | 0.4615 | - | - |
0.2028 | 9000 | 0.4624 | - | - |
0.2073 | 9200 | 0.4462 | - | - |
0.2119 | 9400 | 0.4571 | - | - |
0.2164 | 9600 | 0.452 | - | - |
0.2209 | 9800 | 0.4454 | - | - |
0.2254 | 10000 | 0.4387 | - | - |
0.2299 | 10200 | 0.4247 | - | - |
0.2344 | 10400 | 0.4221 | - | - |
0.2389 | 10600 | 0.4242 | - | - |
0.2434 | 10800 | 0.422 | - | - |
0.2479 | 11000 | 0.4252 | - | - |
0.2524 | 11200 | 0.416 | - | - |
0.2569 | 11400 | 0.4138 | - | - |
0.2614 | 11600 | 0.4139 | - | - |
0.2659 | 11800 | 0.4168 | - | - |
0.2704 | 12000 | 0.4008 | - | - |
0.2750 | 12200 | 0.3994 | - | - |
0.2795 | 12400 | 0.3973 | - | - |
0.2840 | 12600 | 0.393 | - | - |
0.2885 | 12800 | 0.3863 | - | - |
0.2930 | 13000 | 0.3914 | - | - |
0.2975 | 13200 | 0.38 | - | - |
0.3020 | 13400 | 0.3805 | - | - |
0.3065 | 13600 | 0.3749 | - | - |
0.3110 | 13800 | 0.3814 | - | - |
0.3155 | 14000 | 0.3783 | - | - |
0.3200 | 14200 | 0.3733 | - | - |
0.3245 | 14400 | 0.3762 | - | - |
0.3290 | 14600 | 0.3797 | - | - |
0.3336 | 14800 | 0.3727 | - | - |
0.3381 | 15000 | 0.3658 | - | - |
0.3426 | 15200 | 0.3655 | - | - |
0.3471 | 15400 | 0.3619 | - | - |
0.3516 | 15600 | 0.3685 | - | - |
0.3561 | 15800 | 0.3608 | - | - |
0.3606 | 16000 | 0.3631 | - | - |
0.3651 | 16200 | 0.3587 | - | - |
0.3696 | 16400 | 0.3536 | - | - |
0.3741 | 16600 | 0.3477 | - | - |
0.3786 | 16800 | 0.3595 | - | - |
0.3831 | 17000 | 0.3558 | - | - |
0.3876 | 17200 | 0.3518 | - | - |
0.3921 | 17400 | 0.353 | - | - |
0.3967 | 17600 | 0.354 | - | - |
0.4012 | 17800 | 0.3477 | - | - |
0.4057 | 18000 | 0.3457 | - | - |
0.4102 | 18200 | 0.346 | - | - |
0.4147 | 18400 | 0.3451 | - | - |
0.4192 | 18600 | 0.3437 | - | - |
0.4237 | 18800 | 0.3401 | - | - |
0.4282 | 19000 | 0.342 | - | - |
0.4327 | 19200 | 0.3416 | - | - |
0.4372 | 19400 | 0.3405 | - | - |
0.4417 | 19600 | 0.3331 | - | - |
0.4462 | 19800 | 0.3319 | - | - |
0.4507 | 20000 | 0.3264 | - | - |
0 | 0 | - | - | 0.4590 |
0.4507 | 20000 | - | 1.2902 | - |
0.4553 | 20200 | 0.3312 | - | - |
0.4598 | 20400 | 0.3363 | - | - |
0.4643 | 20600 | 0.333 | - | - |
0.4688 | 20800 | 0.3341 | - | - |
0.4733 | 21000 | 0.3287 | - | - |
0.4778 | 21200 | 0.3357 | - | - |
0.4823 | 21400 | 0.3325 | - | - |
0.4868 | 21600 | 0.3323 | - | - |
0.4913 | 21800 | 0.3385 | - | - |
0.4958 | 22000 | 0.3244 | - | - |
0.5003 | 22200 | 0.3281 | - | - |
0.5048 | 22400 | 0.3251 | - | - |
0.5093 | 22600 | 0.3271 | - | - |
0.5138 | 22800 | 0.3271 | - | - |
0.5184 | 23000 | 0.3245 | - | - |
0.5229 | 23200 | 0.3185 | - | - |
0.5274 | 23400 | 0.3212 | - | - |
0.5319 | 23600 | 0.3211 | - | - |
0.5364 | 23800 | 0.3205 | - | - |
0.5409 | 24000 | 0.3104 | - | - |
0.5454 | 24200 | 0.3208 | - | - |
0.5499 | 24400 | 0.3218 | - | - |
0.5544 | 24600 | 0.3183 | - | - |
0.5589 | 24800 | 0.3208 | - | - |
0.5634 | 25000 | 0.3151 | - | - |
0.5679 | 25200 | 0.3138 | - | - |
0.5724 | 25400 | 0.3155 | - | - |
0.5770 | 25600 | 0.3201 | - | - |
0.5815 | 25800 | 0.3135 | - | - |
0.5860 | 26000 | 0.3157 | - | - |
0.5905 | 26200 | 0.3051 | - | - |
0.5950 | 26400 | 0.3121 | - | - |
0.5995 | 26600 | 0.3109 | - | - |
0.6040 | 26800 | 0.3103 | - | - |
0.6085 | 27000 | 0.316 | - | - |
0.6130 | 27200 | 0.3119 | - | - |
0.6175 | 27400 | 0.3135 | - | - |
0.6220 | 27600 | 0.3007 | - | - |
0.6265 | 27800 | 0.304 | - | - |
0.6310 | 28000 | 0.3014 | - | - |
0.6356 | 28200 | 0.3075 | - | - |
0.6401 | 28400 | 0.3074 | - | - |
0.6446 | 28600 | 0.3072 | - | - |
0.6491 | 28800 | 0.3043 | - | - |
0.6536 | 29000 | 0.3059 | - | - |
0.6581 | 29200 | 0.3054 | - | - |
0.6626 | 29400 | 0.3019 | - | - |
0.6671 | 29600 | 0.3108 | - | - |
0.6716 | 29800 | 0.3032 | - | - |
0.6761 | 30000 | 0.3054 | - | - |
0.6806 | 30200 | 0.3034 | - | - |
0.6851 | 30400 | 0.3008 | - | - |
0.6896 | 30600 | 0.3 | - | - |
0.6941 | 30800 | 0.3042 | - | - |
0.6987 | 31000 | 0.3018 | - | - |
0.7032 | 31200 | 0.3162 | - | - |
0.7077 | 31400 | 0.2998 | - | - |
0.7122 | 31600 | 0.2975 | - | - |
0.7167 | 31800 | 0.3015 | - | - |
0.7212 | 32000 | 0.3005 | - | - |
0.7257 | 32200 | 0.3028 | - | - |
0.7302 | 32400 | 0.3029 | - | - |
0.7347 | 32600 | 0.2968 | - | - |
0.7392 | 32800 | 0.3066 | - | - |
0.7437 | 33000 | 0.2958 | - | - |
0.7482 | 33200 | 0.2968 | - | - |
0.7527 | 33400 | 0.2963 | - | - |
0.7573 | 33600 | 0.3026 | - | - |
0.7618 | 33800 | 0.2891 | - | - |
0.7663 | 34000 | 0.2991 | - | - |
0.7708 | 34200 | 0.2939 | - | - |
0.7753 | 34400 | 0.2923 | - | - |
0.7798 | 34600 | 0.295 | - | - |
0.7843 | 34800 | 0.2901 | - | - |
0.7888 | 35000 | 0.294 | - | - |
0.7933 | 35200 | 0.2945 | - | - |
0.7978 | 35400 | 0.299 | - | - |
0.8023 | 35600 | 0.297 | - | - |
0.8068 | 35800 | 0.2881 | - | - |
0.8113 | 36000 | 0.298 | - | - |
0.8158 | 36200 | 0.2925 | - | - |
0.8204 | 36400 | 0.2978 | - | - |
0.8249 | 36600 | 0.2989 | - | - |
0.8294 | 36800 | 0.2914 | - | - |
0.8339 | 37000 | 0.2913 | - | - |
0.8384 | 37200 | 0.2925 | - | - |
0.8429 | 37400 | 0.2991 | - | - |
0.8474 | 37600 | 0.291 | - | - |
0.8519 | 37800 | 0.2937 | - | - |
0.8564 | 38000 | 0.2989 | - | - |
0.8609 | 38200 | 0.2854 | - | - |
0.8654 | 38400 | 0.2878 | - | - |
0.8699 | 38600 | 0.2905 | - | - |
0.8744 | 38800 | 0.287 | - | - |
0.8790 | 39000 | 0.2869 | - | - |
0.8835 | 39200 | 0.2927 | - | - |
0.8880 | 39400 | 0.2889 | - | - |
0.8925 | 39600 | 0.2912 | - | - |
0.8970 | 39800 | 0.2927 | - | - |
0.9015 | 40000 | 0.2952 | - | - |
0 | 0 | - | - | 0.4774 |
0.9015 | 40000 | - | 1.2227 | - |
0.9060 | 40200 | 0.29 | - | - |
0.9105 | 40400 | 0.2878 | - | - |
0.9150 | 40600 | 0.2924 | - | - |
0.9195 | 40800 | 0.2877 | - | - |
0.9240 | 41000 | 0.2844 | - | - |
0.9285 | 41200 | 0.2951 | - | - |
0.9330 | 41400 | 0.291 | - | - |
0.9375 | 41600 | 0.292 | - | - |
0.9421 | 41800 | 0.2902 | - | - |
0.9466 | 42000 | 0.2815 | - | - |
0.9511 | 42200 | 0.29 | - | - |
0.9556 | 42400 | 0.2872 | - | - |
0.9601 | 42600 | 0.2759 | - | - |
0.9646 | 42800 | 0.2832 | - | - |
0.9691 | 43000 | 0.2886 | - | - |
0.9736 | 43200 | 0.2908 | - | - |
0.9781 | 43400 | 0.2857 | - | - |
0.9826 | 43600 | 0.2833 | - | - |
0.9871 | 43800 | 0.2837 | - | - |
0.9916 | 44000 | 0.2882 | - | - |
0.9961 | 44200 | 0.2919 | - | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- PyLate: 1.1.7
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
- Downloads last month
- 4
Model tree for ayushexel/colbert-MiniLM-L6-H384-uncased-3-neg-1-epoch-gooaq-1995000
Base model
nreimers/MiniLM-L6-H384-uncased