bagasshw/whisper-large-v2-jv-full
This model is a fine-tuned version of openai/whisper-large-v2 on the jv_id_asr_split dataset. It achieves the following results on the evaluation set:
- Loss: 0.0848
- Wer: 7.1124
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 60000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2504 | 0.1351 | 5000 | 0.2563 | 19.9661 |
0.1976 | 0.2702 | 10000 | 0.2127 | 17.9671 |
0.1667 | 0.4052 | 15000 | 0.1803 | 14.7502 |
0.1599 | 0.5403 | 20000 | 0.1591 | 13.4658 |
0.1453 | 0.6754 | 25000 | 0.1421 | 12.3080 |
0.1273 | 0.8105 | 30000 | 0.1297 | 11.3644 |
0.1152 | 0.9456 | 35000 | 0.1169 | 10.6327 |
0.0524 | 1.0807 | 40000 | 0.1083 | 9.5124 |
0.053 | 1.2158 | 45000 | 0.1016 | 8.8378 |
0.0438 | 1.3508 | 50000 | 0.0956 | 8.3288 |
0.0384 | 1.4859 | 55000 | 0.0880 | 7.4525 |
0.0367 | 1.6210 | 60000 | 0.0848 | 7.1124 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.7.0+cu128
- Datasets 2.18.0
- Tokenizers 0.21.1
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for bagasshw/whisper-large-v2-jv-full
Base model
openai/whisper-large-v2