bagasshw/whisper-large-v2-jv-full

This model is a fine-tuned version of openai/whisper-large-v2 on the jv_id_asr_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0848
  • Wer: 7.1124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 60000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2504 0.1351 5000 0.2563 19.9661
0.1976 0.2702 10000 0.2127 17.9671
0.1667 0.4052 15000 0.1803 14.7502
0.1599 0.5403 20000 0.1591 13.4658
0.1453 0.6754 25000 0.1421 12.3080
0.1273 0.8105 30000 0.1297 11.3644
0.1152 0.9456 35000 0.1169 10.6327
0.0524 1.0807 40000 0.1083 9.5124
0.053 1.2158 45000 0.1016 8.8378
0.0438 1.3508 50000 0.0956 8.3288
0.0384 1.4859 55000 0.0880 7.4525
0.0367 1.6210 60000 0.0848 7.1124

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.7.0+cu128
  • Datasets 2.18.0
  • Tokenizers 0.21.1
Downloads last month
38
Safetensors
Model size
1.54B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bagasshw/whisper-large-v2-jv-full

Finetuned
(209)
this model

Evaluation results