Whisper-Tiny-Java-v6

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0455
  • Wer: 0.3609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 50000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1166 3.1952 1000 1.0200 0.6975
0.5644 6.3904 2000 0.7342 0.5898
0.2837 9.5856 3000 0.6663 0.5701
0.1451 12.7808 4000 0.6692 0.6157
0.0949 15.9760 5000 0.6929 0.6141
0.0621 19.1696 6000 0.7082 0.4790
0.0466 22.3648 7000 0.7456 0.4469
0.0338 25.56 8000 0.7601 0.4366
0.0288 28.7552 9000 0.7782 0.3894
0.0232 31.9504 10000 0.7977 0.4107
0.0212 35.144 11000 0.7976 0.4144
0.0178 38.3392 12000 0.8184 0.4011
0.0132 41.5344 13000 0.8311 0.3763
0.0145 44.7296 14000 0.8474 0.3790
0.0117 47.9248 15000 0.8625 0.4155
0.0101 51.1184 16000 0.8907 0.3758
0.0091 54.3136 17000 0.8973 0.3999
0.0087 57.5088 18000 0.9277 0.4183
0.0068 60.704 19000 0.9449 0.4389
0.0073 63.8992 20000 0.9372 0.3834
0.0066 67.0928 21000 0.9512 0.4038
0.0056 70.288 22000 0.9799 0.4063
0.0049 73.4832 23000 0.9893 0.3845
0.0046 76.6784 24000 0.9897 0.3809
0.0044 79.8736 25000 0.9970 0.3749
0.0039 83.0672 26000 1.0113 0.3761
0.0035 86.2624 27000 1.0149 0.3832
0.003 89.4576 28000 1.0032 0.3859
0.0025 92.6528 29000 1.0094 0.3857
0.0034 95.848 30000 1.0202 0.3733
0.0027 99.0416 31000 1.0113 0.3655
0.0023 102.2368 32000 1.0178 0.3767
0.002 105.432 33000 1.0110 0.3671
0.002 108.6272 34000 1.0301 0.3733
0.0018 111.8224 35000 1.0479 0.3850
0.002 115.016 36000 1.0216 0.3625
0.002 118.2112 37000 1.0406 0.3687
0.0011 121.4064 38000 1.0520 0.4130
0.0014 124.6016 39000 1.0564 0.3662
0.0009 127.7968 40000 1.0525 0.3788
0.0009 130.992 41000 1.0391 0.3598
0.0011 134.1856 42000 1.0483 0.3763
0.001 137.3808 43000 1.0376 0.4169
0.0008 140.576 44000 1.0424 0.3632
0.0007 143.7712 45000 1.0495 0.4160
0.0009 146.9664 46000 1.0547 0.3687
0.0005 150.16 47000 1.0583 0.3690
0.0007 153.3552 48000 1.0463 0.4123
0.0007 156.5504 49000 1.0464 0.3600
0.0005 159.7456 50000 1.0455 0.3609

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.7.0+cu128
  • Datasets 2.16.0
  • Tokenizers 0.21.1
Downloads last month
6
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bagasshw/whisper-tiny-javanese-openslr-v6

Finetuned
(1601)
this model