Fashion Object Detection Model
Fine-tuned Conditional DETR model for detecting 8 fashion categories:
- bag
- bottom
- dress
- hat
- outer
- shoes
- top
- accessory
Model Details
- Base model: microsoft/conditional-detr-resnet-50
- Training dataset: baselefre/new_embeddings_fixed_cats
- Checkpoint: 18000 steps
Usage
from transformers import AutoImageProcessor, AutoModelForObjectDetection
from PIL import Image
import torch
# Load model
processor = AutoImageProcessor.from_pretrained("baselefre/objectdetectionaugmentedclean")
model = AutoModelForObjectDetection.from_pretrained("baselefre/objectdetectionaugmentedclean")
# Load image
image = Image.open("your_image.jpg")
# Inference
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0]
# Print detections
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
    print(f"{model.config.id2label[label.item()]}: {score:.2f} at {box.tolist()}")
- Downloads last month
- 27