eagle_offline
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 11.0588
- Loss Class 1: 11.0144
- Loss Class 2: 11.0493
- Loss Class 3: 11.0751
- Loss Class 4: 11.0964
- Top 1 Acc: 0.1509
- Top 2 Acc: 0.2279
- Top 3 Acc: 0.2835
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Loss Class 1 | Loss Class 2 | Loss Class 3 | Loss Class 4 | Top 1 Acc | Top 2 Acc | Top 3 Acc |
---|---|---|---|---|---|---|---|---|---|---|
2.8296 | 0.1268 | 256 | 11.4931 | 11.4932 | 11.4766 | 11.4933 | 11.5095 | 0.0201 | 0.0336 | 0.0411 |
2.8011 | 0.2536 | 512 | 11.3786 | 11.3594 | 11.3658 | 11.3854 | 11.4040 | 0.0426 | 0.0650 | 0.0810 |
2.7246 | 0.3804 | 768 | 11.3304 | 11.2980 | 11.3166 | 11.3418 | 11.3651 | 0.0527 | 0.0792 | 0.1006 |
2.8211 | 0.5072 | 1024 | 11.2962 | 11.2578 | 11.2831 | 11.3108 | 11.3331 | 0.0634 | 0.0953 | 0.1188 |
2.7285 | 0.6341 | 1280 | 11.2761 | 11.2310 | 11.2628 | 11.2930 | 11.3177 | 0.0688 | 0.1062 | 0.1319 |
2.8096 | 0.7609 | 1536 | 11.2537 | 11.2060 | 11.2392 | 11.2715 | 11.2982 | 0.0769 | 0.1182 | 0.1458 |
2.7645 | 0.8877 | 1792 | 11.2351 | 11.1856 | 11.2213 | 11.2531 | 11.2803 | 0.0792 | 0.1240 | 0.1564 |
2.7203 | 1.0144 | 2048 | 11.2247 | 11.1752 | 11.2115 | 11.2434 | 11.2689 | 0.0853 | 0.1269 | 0.1610 |
2.7811 | 1.1412 | 2304 | 11.2101 | 11.1601 | 11.1972 | 11.2287 | 11.2546 | 0.0892 | 0.1367 | 0.1696 |
2.7113 | 1.2680 | 2560 | 11.2020 | 11.1495 | 11.1886 | 11.2218 | 11.2482 | 0.0953 | 0.1450 | 0.1819 |
2.7748 | 1.3948 | 2816 | 11.1913 | 11.1390 | 11.1780 | 11.2108 | 11.2375 | 0.0965 | 0.1479 | 0.1867 |
2.7932 | 1.5216 | 3072 | 11.1860 | 11.1336 | 11.1727 | 11.2058 | 11.2319 | 0.0978 | 0.1503 | 0.1886 |
2.7951 | 1.6484 | 3328 | 11.1811 | 11.1283 | 11.1688 | 11.2006 | 11.2266 | 0.1011 | 0.1532 | 0.1921 |
2.7271 | 1.7752 | 3584 | 11.1716 | 11.1191 | 11.1593 | 11.1912 | 11.2167 | 0.1041 | 0.1613 | 0.2000 |
2.7682 | 1.9020 | 3840 | 11.1704 | 11.1156 | 11.1571 | 11.1908 | 11.2178 | 0.1042 | 0.1638 | 0.2044 |
2.7439 | 2.0287 | 4096 | 11.1628 | 11.1088 | 11.1508 | 11.1828 | 11.2088 | 0.1093 | 0.1698 | 0.2080 |
2.764 | 2.1555 | 4352 | 11.1579 | 11.1041 | 11.1459 | 11.1779 | 11.2037 | 0.1093 | 0.1685 | 0.2119 |
2.7638 | 2.2824 | 4608 | 11.1517 | 11.0984 | 11.1395 | 11.1717 | 11.1972 | 0.1117 | 0.1741 | 0.2151 |
2.7852 | 2.4092 | 4864 | 11.1495 | 11.0953 | 11.1372 | 11.1695 | 11.1961 | 0.1106 | 0.1754 | 0.2204 |
2.7414 | 2.5360 | 5120 | 11.1444 | 11.0918 | 11.1324 | 11.1642 | 11.1892 | 0.1171 | 0.1810 | 0.2247 |
2.7618 | 2.6628 | 5376 | 11.1400 | 11.0874 | 11.1279 | 11.1595 | 11.1850 | 0.1180 | 0.1816 | 0.2240 |
2.7808 | 2.7896 | 5632 | 11.1377 | 11.0842 | 11.1254 | 11.1578 | 11.1835 | 0.1208 | 0.1858 | 0.2308 |
2.6931 | 2.9164 | 5888 | 11.1345 | 11.0807 | 11.1222 | 11.1551 | 11.1801 | 0.1227 | 0.1825 | 0.2265 |
2.7398 | 3.0431 | 6144 | 11.1328 | 11.0783 | 11.1210 | 11.1532 | 11.1785 | 0.1254 | 0.1865 | 0.2295 |
2.7563 | 3.1699 | 6400 | 11.1335 | 11.0756 | 11.1197 | 11.1551 | 11.1835 | 0.1249 | 0.1896 | 0.2331 |
2.7295 | 3.2967 | 6656 | 11.1267 | 11.0740 | 11.1148 | 11.1465 | 11.1715 | 0.1277 | 0.1916 | 0.2379 |
2.7348 | 3.4235 | 6912 | 11.1250 | 11.0707 | 11.1126 | 11.1454 | 11.1712 | 0.1268 | 0.1924 | 0.2376 |
2.6711 | 3.5503 | 7168 | 11.1212 | 11.0678 | 11.1088 | 11.1410 | 11.1672 | 0.1272 | 0.1920 | 0.2400 |
2.6863 | 3.6772 | 7424 | 11.1202 | 11.0667 | 11.1087 | 11.1400 | 11.1652 | 0.1281 | 0.1977 | 0.2402 |
2.7103 | 3.8040 | 7680 | 11.1163 | 11.0631 | 11.1043 | 11.1362 | 11.1617 | 0.1306 | 0.1978 | 0.2448 |
2.7503 | 3.9308 | 7936 | 11.1173 | 11.0637 | 11.1057 | 11.1370 | 11.1627 | 0.1299 | 0.1992 | 0.2443 |
2.7507 | 4.0575 | 8192 | 11.1110 | 11.0586 | 11.0995 | 11.1305 | 11.1553 | 0.1305 | 0.1961 | 0.2407 |
2.7319 | 4.1843 | 8448 | 11.1104 | 11.0576 | 11.0987 | 11.1302 | 11.1550 | 0.1352 | 0.2012 | 0.2463 |
2.7322 | 4.3111 | 8704 | 11.1089 | 11.0555 | 11.0968 | 11.1290 | 11.1544 | 0.1323 | 0.2033 | 0.2494 |
2.7094 | 4.4379 | 8960 | 11.1082 | 11.0546 | 11.0956 | 11.1283 | 11.1542 | 0.1322 | 0.2026 | 0.2507 |
2.7303 | 4.5647 | 9216 | 11.1037 | 11.0515 | 11.0925 | 11.1232 | 11.1477 | 0.1355 | 0.2046 | 0.2502 |
2.7736 | 4.6915 | 9472 | 11.1032 | 11.0508 | 11.0918 | 11.1226 | 11.1474 | 0.1375 | 0.2067 | 0.2567 |
2.685 | 4.8183 | 9728 | 11.1020 | 11.0491 | 11.0901 | 11.1215 | 11.1473 | 0.1339 | 0.2044 | 0.2527 |
2.7081 | 4.9451 | 9984 | 11.0981 | 11.0475 | 11.0863 | 11.1168 | 11.1418 | 0.1354 | 0.2070 | 0.2532 |
2.7004 | 5.0718 | 10240 | 11.0967 | 11.0462 | 11.0853 | 11.1154 | 11.1397 | 0.1384 | 0.2090 | 0.2568 |
2.7702 | 5.1986 | 10496 | 11.0953 | 11.0451 | 11.0837 | 11.1136 | 11.1386 | 0.1379 | 0.2100 | 0.2575 |
2.7267 | 5.3254 | 10752 | 11.0952 | 11.0433 | 11.0838 | 11.1142 | 11.1396 | 0.1391 | 0.2107 | 0.2601 |
2.7498 | 5.4523 | 11008 | 11.0931 | 11.0421 | 11.0820 | 11.1120 | 11.1362 | 0.1407 | 0.2102 | 0.2593 |
2.7271 | 5.5791 | 11264 | 11.0919 | 11.0407 | 11.0807 | 11.1108 | 11.1354 | 0.1383 | 0.2114 | 0.2620 |
2.7056 | 5.7059 | 11520 | 11.0921 | 11.0403 | 11.0801 | 11.1113 | 11.1366 | 0.1388 | 0.2084 | 0.2592 |
2.7489 | 5.8327 | 11776 | 11.0899 | 11.0400 | 11.0783 | 11.1085 | 11.1328 | 0.1395 | 0.2144 | 0.2636 |
2.7454 | 5.9595 | 12032 | 11.0901 | 11.0388 | 11.0793 | 11.1089 | 11.1333 | 0.1412 | 0.2126 | 0.2648 |
2.7009 | 6.0862 | 12288 | 11.0841 | 11.0349 | 11.0731 | 11.1024 | 11.1260 | 0.1423 | 0.2180 | 0.2681 |
2.7442 | 6.2130 | 12544 | 11.0846 | 11.0353 | 11.0733 | 11.1027 | 11.1272 | 0.1439 | 0.2174 | 0.2668 |
2.7453 | 6.3398 | 12800 | 11.0837 | 11.0345 | 11.0730 | 11.1019 | 11.1255 | 0.1416 | 0.2169 | 0.2654 |
2.7436 | 6.4666 | 13056 | 11.0828 | 11.0332 | 11.0716 | 11.1011 | 11.1252 | 0.1427 | 0.2193 | 0.2681 |
2.6979 | 6.5934 | 13312 | 11.0820 | 11.0324 | 11.0708 | 11.1002 | 11.1246 | 0.1476 | 0.2199 | 0.2692 |
2.6779 | 6.7202 | 13568 | 11.0817 | 11.0326 | 11.0704 | 11.0997 | 11.1242 | 0.1428 | 0.2179 | 0.2702 |
2.7241 | 6.8471 | 13824 | 11.0789 | 11.0299 | 11.0680 | 11.0970 | 11.1209 | 0.1466 | 0.2184 | 0.2682 |
2.721 | 6.9739 | 14080 | 11.0756 | 11.0283 | 11.0648 | 11.0931 | 11.1161 | 0.1468 | 0.2179 | 0.2694 |
2.7441 | 7.1006 | 14336 | 11.0788 | 11.0301 | 11.0678 | 11.0968 | 11.1205 | 0.1423 | 0.2156 | 0.2642 |
2.7423 | 7.2274 | 14592 | 11.0772 | 11.0281 | 11.0661 | 11.0951 | 11.1194 | 0.1440 | 0.2195 | 0.2722 |
2.6967 | 7.3542 | 14848 | 11.0735 | 11.0266 | 11.0635 | 11.0909 | 11.1131 | 0.1451 | 0.2210 | 0.2721 |
2.7645 | 7.4810 | 15104 | 11.0721 | 11.0250 | 11.0616 | 11.0897 | 11.1120 | 0.1483 | 0.2223 | 0.2727 |
2.7416 | 7.6078 | 15360 | 11.0740 | 11.0253 | 11.0627 | 11.0922 | 11.1160 | 0.1466 | 0.2191 | 0.2742 |
2.7447 | 7.7346 | 15616 | 11.0721 | 11.0241 | 11.0619 | 11.0898 | 11.1127 | 0.1473 | 0.2182 | 0.2737 |
2.7438 | 7.8614 | 15872 | 11.0709 | 11.0240 | 11.0602 | 11.0883 | 11.1110 | 0.1498 | 0.2248 | 0.2749 |
2.7192 | 7.9882 | 16128 | 11.0699 | 11.0230 | 11.0596 | 11.0871 | 11.1101 | 0.1499 | 0.2236 | 0.2761 |
2.7192 | 8.1149 | 16384 | 11.0685 | 11.0220 | 11.0584 | 11.0855 | 11.1080 | 0.1470 | 0.2224 | 0.2751 |
2.7207 | 8.2417 | 16640 | 11.0683 | 11.0220 | 11.0579 | 11.0855 | 11.1078 | 0.1459 | 0.2194 | 0.2745 |
2.7204 | 8.3685 | 16896 | 11.0673 | 11.0204 | 11.0570 | 11.0844 | 11.1074 | 0.1483 | 0.2226 | 0.2739 |
2.7655 | 8.4954 | 17152 | 11.0665 | 11.0199 | 11.0564 | 11.0838 | 11.1058 | 0.1487 | 0.2276 | 0.2769 |
2.7396 | 8.6222 | 17408 | 11.0668 | 11.0198 | 11.0559 | 11.0842 | 11.1072 | 0.1480 | 0.2256 | 0.2781 |
2.6544 | 8.7490 | 17664 | 11.0666 | 11.0195 | 11.0564 | 11.0840 | 11.1066 | 0.1490 | 0.2264 | 0.2793 |
2.7408 | 8.8758 | 17920 | 11.0658 | 11.0191 | 11.0558 | 11.0829 | 11.1054 | 0.1497 | 0.2268 | 0.2782 |
2.7409 | 9.0025 | 18176 | 11.0651 | 11.0183 | 11.0549 | 11.0821 | 11.1052 | 0.1460 | 0.2253 | 0.2779 |
2.7403 | 9.1293 | 18432 | 11.0641 | 11.0177 | 11.0542 | 11.0811 | 11.1033 | 0.1501 | 0.2237 | 0.2775 |
2.737 | 9.2561 | 18688 | 11.0629 | 11.0172 | 11.0529 | 11.0797 | 11.1018 | 0.1509 | 0.2250 | 0.2807 |
2.6977 | 9.3829 | 18944 | 11.0628 | 11.0169 | 11.0529 | 11.0794 | 11.1018 | 0.1491 | 0.2252 | 0.2794 |
2.7396 | 9.5097 | 19200 | 11.0633 | 11.0167 | 11.0529 | 11.0804 | 11.1031 | 0.1502 | 0.2278 | 0.2785 |
2.7177 | 9.6365 | 19456 | 11.0603 | 11.0158 | 11.0504 | 11.0765 | 11.0984 | 0.1533 | 0.2296 | 0.2818 |
2.7369 | 9.7633 | 19712 | 11.0593 | 11.0149 | 11.0498 | 11.0755 | 11.0970 | 0.1527 | 0.2299 | 0.2852 |
2.7607 | 9.8902 | 19968 | 11.0588 | 11.0144 | 11.0493 | 11.0751 | 11.0964 | 0.1509 | 0.2279 | 0.2835 |
Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support