eagle_offline

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 11.0588
  • Loss Class 1: 11.0144
  • Loss Class 2: 11.0493
  • Loss Class 3: 11.0751
  • Loss Class 4: 11.0964
  • Top 1 Acc: 0.1509
  • Top 2 Acc: 0.2279
  • Top 3 Acc: 0.2835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Loss Class 1 Loss Class 2 Loss Class 3 Loss Class 4 Top 1 Acc Top 2 Acc Top 3 Acc
2.8296 0.1268 256 11.4931 11.4932 11.4766 11.4933 11.5095 0.0201 0.0336 0.0411
2.8011 0.2536 512 11.3786 11.3594 11.3658 11.3854 11.4040 0.0426 0.0650 0.0810
2.7246 0.3804 768 11.3304 11.2980 11.3166 11.3418 11.3651 0.0527 0.0792 0.1006
2.8211 0.5072 1024 11.2962 11.2578 11.2831 11.3108 11.3331 0.0634 0.0953 0.1188
2.7285 0.6341 1280 11.2761 11.2310 11.2628 11.2930 11.3177 0.0688 0.1062 0.1319
2.8096 0.7609 1536 11.2537 11.2060 11.2392 11.2715 11.2982 0.0769 0.1182 0.1458
2.7645 0.8877 1792 11.2351 11.1856 11.2213 11.2531 11.2803 0.0792 0.1240 0.1564
2.7203 1.0144 2048 11.2247 11.1752 11.2115 11.2434 11.2689 0.0853 0.1269 0.1610
2.7811 1.1412 2304 11.2101 11.1601 11.1972 11.2287 11.2546 0.0892 0.1367 0.1696
2.7113 1.2680 2560 11.2020 11.1495 11.1886 11.2218 11.2482 0.0953 0.1450 0.1819
2.7748 1.3948 2816 11.1913 11.1390 11.1780 11.2108 11.2375 0.0965 0.1479 0.1867
2.7932 1.5216 3072 11.1860 11.1336 11.1727 11.2058 11.2319 0.0978 0.1503 0.1886
2.7951 1.6484 3328 11.1811 11.1283 11.1688 11.2006 11.2266 0.1011 0.1532 0.1921
2.7271 1.7752 3584 11.1716 11.1191 11.1593 11.1912 11.2167 0.1041 0.1613 0.2000
2.7682 1.9020 3840 11.1704 11.1156 11.1571 11.1908 11.2178 0.1042 0.1638 0.2044
2.7439 2.0287 4096 11.1628 11.1088 11.1508 11.1828 11.2088 0.1093 0.1698 0.2080
2.764 2.1555 4352 11.1579 11.1041 11.1459 11.1779 11.2037 0.1093 0.1685 0.2119
2.7638 2.2824 4608 11.1517 11.0984 11.1395 11.1717 11.1972 0.1117 0.1741 0.2151
2.7852 2.4092 4864 11.1495 11.0953 11.1372 11.1695 11.1961 0.1106 0.1754 0.2204
2.7414 2.5360 5120 11.1444 11.0918 11.1324 11.1642 11.1892 0.1171 0.1810 0.2247
2.7618 2.6628 5376 11.1400 11.0874 11.1279 11.1595 11.1850 0.1180 0.1816 0.2240
2.7808 2.7896 5632 11.1377 11.0842 11.1254 11.1578 11.1835 0.1208 0.1858 0.2308
2.6931 2.9164 5888 11.1345 11.0807 11.1222 11.1551 11.1801 0.1227 0.1825 0.2265
2.7398 3.0431 6144 11.1328 11.0783 11.1210 11.1532 11.1785 0.1254 0.1865 0.2295
2.7563 3.1699 6400 11.1335 11.0756 11.1197 11.1551 11.1835 0.1249 0.1896 0.2331
2.7295 3.2967 6656 11.1267 11.0740 11.1148 11.1465 11.1715 0.1277 0.1916 0.2379
2.7348 3.4235 6912 11.1250 11.0707 11.1126 11.1454 11.1712 0.1268 0.1924 0.2376
2.6711 3.5503 7168 11.1212 11.0678 11.1088 11.1410 11.1672 0.1272 0.1920 0.2400
2.6863 3.6772 7424 11.1202 11.0667 11.1087 11.1400 11.1652 0.1281 0.1977 0.2402
2.7103 3.8040 7680 11.1163 11.0631 11.1043 11.1362 11.1617 0.1306 0.1978 0.2448
2.7503 3.9308 7936 11.1173 11.0637 11.1057 11.1370 11.1627 0.1299 0.1992 0.2443
2.7507 4.0575 8192 11.1110 11.0586 11.0995 11.1305 11.1553 0.1305 0.1961 0.2407
2.7319 4.1843 8448 11.1104 11.0576 11.0987 11.1302 11.1550 0.1352 0.2012 0.2463
2.7322 4.3111 8704 11.1089 11.0555 11.0968 11.1290 11.1544 0.1323 0.2033 0.2494
2.7094 4.4379 8960 11.1082 11.0546 11.0956 11.1283 11.1542 0.1322 0.2026 0.2507
2.7303 4.5647 9216 11.1037 11.0515 11.0925 11.1232 11.1477 0.1355 0.2046 0.2502
2.7736 4.6915 9472 11.1032 11.0508 11.0918 11.1226 11.1474 0.1375 0.2067 0.2567
2.685 4.8183 9728 11.1020 11.0491 11.0901 11.1215 11.1473 0.1339 0.2044 0.2527
2.7081 4.9451 9984 11.0981 11.0475 11.0863 11.1168 11.1418 0.1354 0.2070 0.2532
2.7004 5.0718 10240 11.0967 11.0462 11.0853 11.1154 11.1397 0.1384 0.2090 0.2568
2.7702 5.1986 10496 11.0953 11.0451 11.0837 11.1136 11.1386 0.1379 0.2100 0.2575
2.7267 5.3254 10752 11.0952 11.0433 11.0838 11.1142 11.1396 0.1391 0.2107 0.2601
2.7498 5.4523 11008 11.0931 11.0421 11.0820 11.1120 11.1362 0.1407 0.2102 0.2593
2.7271 5.5791 11264 11.0919 11.0407 11.0807 11.1108 11.1354 0.1383 0.2114 0.2620
2.7056 5.7059 11520 11.0921 11.0403 11.0801 11.1113 11.1366 0.1388 0.2084 0.2592
2.7489 5.8327 11776 11.0899 11.0400 11.0783 11.1085 11.1328 0.1395 0.2144 0.2636
2.7454 5.9595 12032 11.0901 11.0388 11.0793 11.1089 11.1333 0.1412 0.2126 0.2648
2.7009 6.0862 12288 11.0841 11.0349 11.0731 11.1024 11.1260 0.1423 0.2180 0.2681
2.7442 6.2130 12544 11.0846 11.0353 11.0733 11.1027 11.1272 0.1439 0.2174 0.2668
2.7453 6.3398 12800 11.0837 11.0345 11.0730 11.1019 11.1255 0.1416 0.2169 0.2654
2.7436 6.4666 13056 11.0828 11.0332 11.0716 11.1011 11.1252 0.1427 0.2193 0.2681
2.6979 6.5934 13312 11.0820 11.0324 11.0708 11.1002 11.1246 0.1476 0.2199 0.2692
2.6779 6.7202 13568 11.0817 11.0326 11.0704 11.0997 11.1242 0.1428 0.2179 0.2702
2.7241 6.8471 13824 11.0789 11.0299 11.0680 11.0970 11.1209 0.1466 0.2184 0.2682
2.721 6.9739 14080 11.0756 11.0283 11.0648 11.0931 11.1161 0.1468 0.2179 0.2694
2.7441 7.1006 14336 11.0788 11.0301 11.0678 11.0968 11.1205 0.1423 0.2156 0.2642
2.7423 7.2274 14592 11.0772 11.0281 11.0661 11.0951 11.1194 0.1440 0.2195 0.2722
2.6967 7.3542 14848 11.0735 11.0266 11.0635 11.0909 11.1131 0.1451 0.2210 0.2721
2.7645 7.4810 15104 11.0721 11.0250 11.0616 11.0897 11.1120 0.1483 0.2223 0.2727
2.7416 7.6078 15360 11.0740 11.0253 11.0627 11.0922 11.1160 0.1466 0.2191 0.2742
2.7447 7.7346 15616 11.0721 11.0241 11.0619 11.0898 11.1127 0.1473 0.2182 0.2737
2.7438 7.8614 15872 11.0709 11.0240 11.0602 11.0883 11.1110 0.1498 0.2248 0.2749
2.7192 7.9882 16128 11.0699 11.0230 11.0596 11.0871 11.1101 0.1499 0.2236 0.2761
2.7192 8.1149 16384 11.0685 11.0220 11.0584 11.0855 11.1080 0.1470 0.2224 0.2751
2.7207 8.2417 16640 11.0683 11.0220 11.0579 11.0855 11.1078 0.1459 0.2194 0.2745
2.7204 8.3685 16896 11.0673 11.0204 11.0570 11.0844 11.1074 0.1483 0.2226 0.2739
2.7655 8.4954 17152 11.0665 11.0199 11.0564 11.0838 11.1058 0.1487 0.2276 0.2769
2.7396 8.6222 17408 11.0668 11.0198 11.0559 11.0842 11.1072 0.1480 0.2256 0.2781
2.6544 8.7490 17664 11.0666 11.0195 11.0564 11.0840 11.1066 0.1490 0.2264 0.2793
2.7408 8.8758 17920 11.0658 11.0191 11.0558 11.0829 11.1054 0.1497 0.2268 0.2782
2.7409 9.0025 18176 11.0651 11.0183 11.0549 11.0821 11.1052 0.1460 0.2253 0.2779
2.7403 9.1293 18432 11.0641 11.0177 11.0542 11.0811 11.1033 0.1501 0.2237 0.2775
2.737 9.2561 18688 11.0629 11.0172 11.0529 11.0797 11.1018 0.1509 0.2250 0.2807
2.6977 9.3829 18944 11.0628 11.0169 11.0529 11.0794 11.1018 0.1491 0.2252 0.2794
2.7396 9.5097 19200 11.0633 11.0167 11.0529 11.0804 11.1031 0.1502 0.2278 0.2785
2.7177 9.6365 19456 11.0603 11.0158 11.0504 11.0765 11.0984 0.1533 0.2296 0.2818
2.7369 9.7633 19712 11.0593 11.0149 11.0498 11.0755 11.0970 0.1527 0.2299 0.2852
2.7607 9.8902 19968 11.0588 11.0144 11.0493 11.0751 11.0964 0.1509 0.2279 0.2835

Framework versions

  • Transformers 4.53.0
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
2
Safetensors
Model size
777M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support