How to infer
install libraries
pip install unsloth
pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install -U torch
pip install -U peft
code
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "baxin/llm-jp-3-13b-it-seq-r-la_lora_test"
HF_TOKEN=""
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
# load elyza-tasks-100-TV jsonl
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
FastLanguageModel.for_inference(model)
system_prompt = "γγͺγγ―ζη€Ίγ«ζ³¨ζζ·±γεΎγθ¦ͺεγͺγ’γ·γΉγΏγ³γγ§γγζη€ΊγγΉγγγγγ€γΉγγγγ§ηθ§£γγεηγγ¦γγ γγγ"
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""{system_prompt}\n\n### ζη€Ί\n{input}\n### εη\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 3072, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### εη')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
Uploaded model
- Developed by: baxin
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for baxin/llm-jp-3-13b-it-seq-r-la_lora_test
Base model
llm-jp/llm-jp-3-13b