Bert-RAdam-XL
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1916
- Precision: 0.8057
- Recall: 0.8640
- F1: 0.8338
- Accuracy: 0.9455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.1843 | 1.0 | 1000 | 0.1410 | 0.7841 | 0.8672 | 0.8236 | 0.9436 |
| 0.1156 | 2.0 | 2000 | 0.1443 | 0.7981 | 0.8372 | 0.8172 | 0.9438 |
| 0.0862 | 3.0 | 3000 | 0.1562 | 0.7947 | 0.8961 | 0.8424 | 0.9477 |
| 0.0612 | 4.0 | 4000 | 0.1735 | 0.7976 | 0.8853 | 0.8392 | 0.9470 |
| 0.038 | 5.0 | 5000 | 0.1916 | 0.8057 | 0.8640 | 0.8338 | 0.9455 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Model tree for benchaffe/Bert-RAdam-XL
Base model
google-bert/bert-base-cased