BharatGen

FinanceParam

BharatGen introduces FinanceParam, a domain-specialized large language model fine-tuned from Param-1-2.9B-Instruct on a high-quality finance dataset. FinanceParam is designed to deliver accurate, bilingual (English-Hindi) Indian financial knowledge for personal finance, taxation, banking, investments, and policy guidance.


πŸ’° Motivation

Finance touches every aspect of daily life, from household budgeting to national economic policy. Yet, existing language models lack deep domain expertise in Indian finance, regulatory frameworks, and cultural nuances. FinanceParam bridges this gap by combining Param-1’s bilingual capabilities with a meticulously curated financial knowledge base tailored for India.


πŸ— Model Architecture

FinanceParam inherits the architecture of Param-1-2.9B-Instruct:

  • Hidden size: 2048
  • Intermediate size: 7168
  • Attention heads: 16
  • Hidden layers: 32
  • Key-value heads: 8
  • Max position embeddings: 2048
  • Activation: SiLU
  • Positional Embeddings: Rotary (RoPE, theta=10000)
  • Attention Mechanism: Grouped-query attention
  • Precision: bf16-mixed
  • Base model: Param-1-2.9B-Instruct

πŸ“š Data Preparation

FinanceParam’s training corpus was carefully crafted to ensure deep Indian Finance knowledge, cultural relevance, and bilingual (English-Hindi) accessibility.

Steps involved:

  1. Source Gathering

    • 10K+ open-source, India-focused finance news & information passages.
  2. Question Generation

    • Generated 5 curated Q&A pairs per passage using an open-source LLM.
  3. Domain Taxonomy & Personas

    • Built an exhaustive, India-specific financial taxonomy.
    • Defined CA, policy-maker, business and multiple such personas.
  4. Dataset Construction

    • 2M Q&A pairs grounded in taxonomy and personas.
    • Complete dataset translated into Hindi.
    • 6M multi-turn conversation samples created.
  5. Source Gathering

    • Collected 25,000+ finance-focused passages from trusted Indian sources: government portals (Income Tax Dept., RBI, SEBI, IRDAI), banking reports, investment advisories, policy documents, and financial news.
  6. Knowledge-Enriched Question Generation

    • For each passage, an open-source LLM generated 5 high-quality Q&A pairs, refined to cover personal finance, taxation, banking, insurance, and investment topics.
  7. Domain Taxonomy & Personas

    • Built a comprehensive Indian finance taxonomy spanning income, budgeting, taxation, insurance, banking, and investments.
    • Defined diverse user personas: salaried professionals, students, investors, small business owners, retirees, and policy-makers.
  8. Dataset Construction

    • Compiled 9M Q&A pairs grounded in taxonomy and personas.
    • Translated the entire dataset into Hindi to ensure accessibility across India’s multilingual audience.
    • Expanded into 8M multi-turn dialogues

πŸ‹οΈ Training Setup

  • Base model: Param-1-2.9B-Instruct
  • Training framework: Transformer Framework + pytorch multi-node setup
  • Prompt template: Custom-designed for financial system inference
  • Scheduler: Linear
  • Epochs: 1
  • Total training samples: 24M
  • Learning rate: 2e-4
  • Vocab size: 256K
  • Batch size: 512

πŸš€ Inference Example

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "bharatgenai/FinanceParam"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.bfloat32,
    device_map="auto"
)

# Example Finance query
user_input = "How to file income tax return. Tell me in detail"

# Based on your requirements use the type of prompt (refere the above examples)
# Append assistant and user for chat model.
prompt = [{"role": "user", "content": user_input}]

inputs = tokenizer.apply_chat_template(prompt, tokenize=True, return_tensors="pt").to(model.device)

with torch.no_grad():
    output = model.generate(
        inputs,
        max_new_tokens=300,
        eos_token_id=tokenizer.eos_token_id,
        use_cache=False
    )

print(tokenizer.decode(output[0], skip_special_tokens=True))

πŸ“Š Benchmarks

Overall BBF Performance

This table shows the average BBF (Benchmark for Finance) performance across all tasks, split by English and Hindi subsets.

Model BBF BBF (English) BBF (Hindi)
gemma-2-2b-it 30.24 31.26 27.93
Llama-3.2-1B-Instruct 26.21 26.28 26.04
Llama-3.2-3B-Instruct 31.76 32.94 29.09
Qwen2.5-3B-Instruct 33.09 34.84 29.17
granite-3.1-2b-instruct 31.07 32.82 27.11
FinanceParam 31.42 32.24 29.56

Domain-Wise Performance

This table highlights how models perform across specific finance-related domains such as banking, taxation, insurance, economics, etc.

Domain gemma-2-2b-it Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct granite-3.1-2b-instruct FinanceParam
Accounting 30.53 26.13 27.68 31.82 30.92 31.05
Banking Services 34.67 28.18 38.68 36.89 34.33 35.78
Behavioral Finance 46.27 28.36 37.31 44.78 44.78 47.76
Business Management 45.78 26.51 53.01 40.96 40.96 44.58
Commerce 31.05 27.46 31.52 33.72 32.21 28.51
Corporate Finance & Investment 31.98 26.37 35.05 37.58 31.87 35.05
Data & Analytics in Finance 27.56 18.11 20.47 28.35 38.58 35.43
Economics & Development Studies 41.24 32.85 40.51 44.16 37.59 40.88
Energy, Infrastructure & Finance 28.05 28.05 39.02 30.49 39.02 34.15
Environmental Finance 34.52 29.76 38.69 44.05 41.67 45.83
Finance Education 39.83 25.42 34.75 43.22 41.53 31.36
Financial Markets 36.17 29.79 48.94 42.55 34.04 40.43
Financial Technology 47.83 13.04 34.78 39.13 34.78 43.48
General Knowledge 38.40 28.94 43.04 38.22 39.15 40.07
Governance & Policy 34.21 27.63 39.29 38.16 35.15 38.16
Healthcare Economics 39.47 31.58 41.23 45.61 34.21 36.84
History, Sociology & Cultural Studies of Finance 41.73 30.71 44.88 38.58 37.01 45.67
Information Technology Finance 44.49 35.51 53.06 58.16 48.16 58.16
Insurance & Risk Management 30.95 26.19 38.10 38.10 33.33 35.71
Interdisciplinary Finance 36.60 30.72 33.33 36.60 37.25 37.25
International Finance & Trade 42.17 34.94 39.76 42.17 36.14 45.78
Language & Communication 40.06 29.18 40.59 42.71 35.94 41.65
Legal Finance 41.18 20.59 20.59 23.53 50.00 20.59
Marketing Finance 35.71 38.10 38.10 50.00 54.76 61.90
Mathematics for Finance 25.96 24.91 27.57 29.85 27.66 25.59
Problem Solving 24.76 23.65 25.15 26.20 26.56 25.71
Rural Economics 40.61 30.65 44.83 45.21 41.76 47.13
Science and Technology in Finance 37.62 30.69 41.58 43.56 27.72 40.59
Sports, Media & Finance Linkages 48.89 28.89 42.22 53.33 28.89 35.56
Taxation & Regulatory Compliance 45.81 31.61 47.10 38.71 31.61 37.42

Difficulty-Level Performance

This table breaks down performance across Easy, Medium, and Hard difficulty levels.

Difficulty gemma-2-2b-it Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct granite-3.1-2b-instruct FinanceParam
Easy 36.55 28.72 39.73 39.91 36.68 38.31
Hard 23.20 22.43 23.87 25.02 25.32 26.60
Medium 27.67 25.50 28.20 30.48 28.63 27.71

Question-Type Performance

This table reports results by question type (e.g., MCQ, comprehension, reasoning).

Question Type gemma-2-2b-it Llama-3.2-1B-Instruct Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct granite-3.1-2b-instruct FinanceParam
Assertion or Reasoning 32.56 28.84 35.35 27.44 33.95 29.77
Fill in the blanks 35.66 27.97 38.11 44.06 33.92 44.76
MCQ 30.40 26.29 31.71 33.20 31.31 31.53
Match the column 24.37 20.17 32.77 31.09 30.25 22.69
Reading Comprehension 30.59 25.88 31.76 28.24 31.76 30.59
Rearrange the sequence 24.29 23.59 29.10 28.39 22.88 25.14

πŸ“œ License

This SFT checkpoint is released under the BharatGen non-commercial license.
Please refer to the LICENSE for terms and conditions.

Downloads last month
21
Safetensors
Model size
2.86B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for bharatgenai/FinanceParam

Finetuned
(1)
this model