bhaskarSingha's picture
Training in progress epoch 2
b98b4d5
---
license: other
base_model: nvidia/segformer-b0-finetuned-ade-512-512
tags:
- generated_from_keras_callback
model-index:
- name: bhaskarSingha/segformer-finetuned-paddyV1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bhaskarSingha/segformer-finetuned-paddyV1
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: nan
- Validation Loss: nan
- Validation Mean Iou: 0.0004
- Validation Mean Accuracy: 0.5
- Validation Overall Accuracy: 0.1499
- Validation Accuracy Healthy: 1.0
- Validation Accuracy Brownspot: 0.0
- Validation Accuracy Leafblast: nan
- Validation Iou Healthy: 0.0009
- Validation Iou Brownspot: 0.0
- Validation Iou Leafblast: nan
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1000, 'alpha': 0.0, 'name': 'CosineDecay', 'warmup_target': 5e-05, 'warmup_steps': 100}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Accuracy Healthy | Validation Accuracy Brownspot | Validation Accuracy Leafblast | Validation Iou Healthy | Validation Iou Brownspot | Validation Iou Leafblast | Epoch |
|:----------:|:---------------:|:-------------------:|:------------------------:|:---------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:----------------------:|:------------------------:|:------------------------:|:-----:|
| nan | nan | 0.0004 | 0.5 | 0.1499 | 1.0 | 0.0 | nan | 0.0009 | 0.0 | nan | 0 |
| nan | nan | 0.0004 | 0.5 | 0.1499 | 1.0 | 0.0 | nan | 0.0009 | 0.0 | nan | 1 |
| nan | nan | 0.0004 | 0.5 | 0.1499 | 1.0 | 0.0 | nan | 0.0009 | 0.0 | nan | 2 |
### Framework versions
- Transformers 4.40.2
- TensorFlow 2.15.0
- Datasets 2.15.0
- Tokenizers 0.19.1