wav2vec2-large-mms-1b-wolof
This model is a fine-tuned version of facebook/mms-1b-all on the Isma/alffa_wolof dataset. It is designed to perform automatic speech recognition (ASR) in the Wolof language.
Model description
This model is based on the Wav2Vec 2.0 architecture, which has been fine-tuned for speech recognition tasks. The base model, facebook/mms-1b-all, was trained on a multilingual corpus for general-purpose ASR. This fine-tuned version has been specifically trained on the Waxal Wolof dataset, which contains audio recordings in the Wolof language.
Training and evaluation data
The model was trained on the Isma/alffa_wolof dataset, which contains audio samples in the Wolof language. This dataset is used to fine-tune the model to improve accuracy on the specific phonetic characteristics of Wolof speech.
Inference manually
! pip install datasets
# Load test dataset
from datasets import load_dataset, Audio
dataset = load_dataset("perrynelson/waxal-wolof", trust_remote_code=True)
dataset
# Display the first audio using Ipython
from IPython.display import Audio, display
Audio(dataset['train'][322]['audio']['array'], rate=16000)
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
model_id = "bilalfaye/wav2vec2-large-mms-1b-wolof"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model on CPU first
model = Wav2Vec2ForCTC.from_pretrained(model_id,
target_lang="wol",
torch_dtype=torch.float16 # Use half-precision
).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_id)
processor.tokenizer.set_target_lang("wol")
# Process the audio
input_dict = processor(
dataset['train'][322]["audio"]["array"],
sampling_rate=16_000,
return_tensors="pt",
padding=True
)
# Move inputs to the appropriate device for the first processing layer
input_values = input_dict.input_values.to(device, dtype=torch.float16)
# Perform inference
logits = model(input_values).logits
# Decode predictions
pred_ids = torch.argmax(logits, dim=-1)[0]
print("Prediction:")
print(processor.decode(pred_ids))
print("\nReference:")
print(dataset['train'][322]['transcription'].lower())
Inference with pipeline
from transformers import pipeline
import torch
# Model ID
model_id = "bilalfaye/wav2vec2-large-mms-1b-wolof"
# Determine device (use GPU if available, otherwise fallback to CPU)
device = 0 if torch.cuda.is_available() else -1
# Use half precision (float16) for inference if GPU is available
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Set up the pipeline for automatic speech recognition
pipe = pipeline(
task="automatic-speech-recognition",
model=model_id,
processor=model_id,
device=device, # Specify the device (GPU if available, otherwise CPU)
torch_dtype=torch_dtype, # Set the precision (float16 for half precision, float32 otherwise)
framework="pt" # Use PyTorch as the framework
)
# Input audio processing
audio_array = dataset['train'][322]["audio"]["array"] # Fetching an audio sample
# Run inference
result = pipe(audio_array)
# Prediction
print("Prediction:")
print(result['text'])
# Reference (for comparison)
print("\nReference:")
print(dataset['train'][322]['transcription'].lower())
Free memory
import gc
import torch
import psutil
# Free up unused memory in CUDA (GPU) - only needed if you use a GPU
if torch.cuda.is_available():
torch.cuda.empty_cache() # Clears GPU memory cache
torch.cuda.reset_peak_memory_stats() # Resets memory stats
# Collect any unused memory in Python (CPU)
gc.collect() # Collect unused memory in Python's garbage collector
# Optionally, check memory status after clearing
if torch.cuda.is_available():
print(f"GPU Memory Allocated: {torch.cuda.memory_allocated()} bytes")
print(f"GPU Memory Cached: {torch.cuda.memory_reserved()} bytes")
else:
print(f"CPU Memory Usage: {psutil.virtual_memory().percent}%")
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3793 | 14.0 | 12250 | 0.1517 | 0.1888 |
0.3709 | 15.0 | 13125 | 0.1512 | 0.1882 |
0.3702 | 16.0 | 14000 | 0.1499 | 0.1858 |
0.367 | 17.0 | 14875 | 0.1492 | 0.1848 |
0.3656 | 18.0 | 15750 | 0.1493 | 0.1842 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.4.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
Intended uses & limitations
- Intended uses: This model is intended for speech-to-text tasks in Wolof. It can be used to transcribe audio recordings in Wolof into written text.
- Limitations: This model performs best with clean audio and may struggle with noisy or low-quality recordings. It is designed specifically for the Wolof language and may not work well with other languages.
Author Information
- Author: Bilal FAYE
- Downloads last month
- 127
Model tree for bilalfaye/wav2vec2-large-mms-1b-wolof
Base model
facebook/mms-1b