File size: 6,148 Bytes
5bfbcb2
 
 
 
 
 
 
 
 
 
e4df77b
 
 
 
 
 
5bfbcb2
 
 
 
 
 
 
e4df77b
5bfbcb2
e4df77b
5bfbcb2
 
 
e4df77b
 
 
5bfbcb2
e4df77b
5bfbcb2
e4df77b
 
 
5bfbcb2
e4df77b
 
 
5bfbcb2
e4df77b
5bfbcb2
e4df77b
5bfbcb2
e4df77b
5bfbcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4df77b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: whisper-medium-english-2-wolof
  results: []
datasets:
- bilalfaye/english-wolof-french-dataset
language:
- en
- wo
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-medium-english-2-wolof

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [bilalfaye/english-wolof-french-dataset](https://huggingface.co/datasets/bilalfaye/english-wolof-french-dataset). The model is designed to translate English audio into Wolof text. Since the base Whisper model does not natively support Wolof, this fine-tuned version bridges that gap.
It achieves the following results on the evaluation set:

- Loss: 1.1668
- Bleu: 34.6061

## Model Description

The model is based on OpenAI's Whisper architecture, fine-tuned to recognize and translate English speech to Wolof. It leverages the "medium" variant, offering a balance between accuracy and computational efficiency.

## Intended Uses & Limitations

**Intended uses:**
- Automatic transcription and translation of English audio into Wolof text.
- Assisting researchers and language learners working with English audio content.

**Limitations:**
- May struggle with heavy accents or noisy environments.
- Performance may vary depending on speaker pronunciation and recording quality.

## Training and Evaluation Data

The model was fine-tuned on the [bilalfaye/english-wolof-french-dataset](https://huggingface.co/datasets/bilalfaye/english-wolof-french-dataset), which consists of English audio paired with Wolof translations.

## Training Procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Bleu    |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.9771        | 0.8941 | 2000  | 0.9736          | 22.8506 |
| 0.6832        | 1.7881 | 4000  | 0.8379          | 30.0113 |
| 0.4568        | 2.6822 | 6000  | 0.8083          | 33.4759 |
| 0.2623        | 3.5762 | 8000  | 0.8506          | 33.4723 |
| 0.1608        | 4.4703 | 10000 | 0.9128          | 33.6342 |
| 0.0758        | 5.3643 | 12000 | 0.9808          | 33.7770 |
| 0.0315        | 6.2584 | 14000 | 1.0546          | 34.0842 |
| 0.0133        | 7.1524 | 16000 | 1.1085          | 34.2531 |
| 0.0057        | 8.0465 | 18000 | 1.1455          | 34.5325 |
| 0.0046        | 8.9405 | 20000 | 1.1668          | 34.6061 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.4.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1

## Inference

### Using Python Code

```python
! pip install transformers datasets torch

import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from datasets import load_dataset

# Load model and processor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = WhisperForConditionalGeneration.from_pretrained("bilalfaye/whisper-medium-english-2-wolof").to(device)
processor = WhisperProcessor.from_pretrained("bilalfaye/whisper-medium-english-2-wolof")

# Load dataset
streaming_dataset = load_dataset("bilalfaye/english-wolof-french-dataset", split="train", streaming=True)
iterator = iter(streaming_dataset)
sample = next(iterator)
sample = next(iterator)
sample = next(iterator)


# Preprocess audio
input_features = processor(sample["en_audio"]["audio"]["array"],
                           sampling_rate=sample["en_audio"]["audio"]["sampling_rate"],
                           return_tensors="pt").input_features.to(device)

# Generate transcription
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)

print("Correct sentence:", sample["en"])
print("Transcription:", transcription[0])
```

### Using Gradio Interface

```python
! pip install gradio

from transformers import pipeline
import gradio as gr
import numpy as np


# Load model pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(task="automatic-speech-recognition", model="bilalfaye/whisper-medium-english-2-wolof", device=device)

# Function for transcription
def transcribe(audio):
    if audio is None:
        return "No audio provided. Please try again."

    if isinstance(audio, str):  
        waveform, sample_rate = torchaudio.load(audio)
    elif isinstance(audio, tuple):  # Case microphone (Gradio donne un tuple (fichier, sample_rate))
        waveform, sample_rate = torchaudio.load(audio[0]) 
    else:
        return "Invalid audio input format."
    
    if waveform.shape[0] > 1:
        mono_audio = waveform.mean(dim=0, keepdim=True)
    else:
        mono_audio = waveform

    target_sample_rate = 16000
    if sample_rate != target_sample_rate:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
        mono_audio = resampler(mono_audio)
        sample_rate = target_sample_rate

    mono_audio = mono_audio.squeeze(0).numpy().astype(np.float32)

    result = pipe({"array": mono_audio, "sampling_rate": sample_rate})
    return result['text']


# Create Gradio interfaces
interface = gr.Interface(
    fn=transcribe,
    inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),  
    outputs="text",
    title="Whisper Medium English Translation",
    description="Record audio in English and translate it to Wolof using a fine-tuned Whisper medium model.",
    #live=True,
)


app = gr.TabbedInterface(
    [interface],
    ["Use Uploaded File or Microphone"]  
)

app.launch(debug=True, share=True)
```

**Author**
  - Bilal FAYE