whisper-medium-english-2-wolof
This model is a fine-tuned version of openai/whisper-medium on the bilalfaye/english-wolof-french-dataset. The model is designed to translate English audio into Wolof text. Since the base Whisper model does not natively support Wolof, this fine-tuned version bridges that gap. It achieves the following results on the evaluation set:
- Loss: 1.1668
- Bleu: 34.6061
Model Description
The model is based on OpenAI's Whisper architecture, fine-tuned to recognize and translate English speech to Wolof. It leverages the "medium" variant, offering a balance between accuracy and computational efficiency.
Intended Uses & Limitations
Intended uses:
- Automatic transcription and translation of English audio into Wolof text.
- Assisting researchers and language learners working with English audio content.
Limitations:
- May struggle with heavy accents or noisy environments.
- Performance may vary depending on speaker pronunciation and recording quality.
Training and Evaluation Data
The model was fine-tuned on the bilalfaye/english-wolof-french-dataset, which consists of English audio paired with Wolof translations.
Training Procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
0.9771 | 0.8941 | 2000 | 0.9736 | 22.8506 |
0.6832 | 1.7881 | 4000 | 0.8379 | 30.0113 |
0.4568 | 2.6822 | 6000 | 0.8083 | 33.4759 |
0.2623 | 3.5762 | 8000 | 0.8506 | 33.4723 |
0.1608 | 4.4703 | 10000 | 0.9128 | 33.6342 |
0.0758 | 5.3643 | 12000 | 0.9808 | 33.7770 |
0.0315 | 6.2584 | 14000 | 1.0546 | 34.0842 |
0.0133 | 7.1524 | 16000 | 1.1085 | 34.2531 |
0.0057 | 8.0465 | 18000 | 1.1455 | 34.5325 |
0.0046 | 8.9405 | 20000 | 1.1668 | 34.6061 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.4.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
Inference
Using Python Code
! pip install transformers datasets torch
import torch
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from datasets import load_dataset
# Load model and processor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = WhisperForConditionalGeneration.from_pretrained("bilalfaye/whisper-medium-english-2-wolof").to(device)
processor = WhisperProcessor.from_pretrained("bilalfaye/whisper-medium-english-2-wolof")
# Load dataset
streaming_dataset = load_dataset("bilalfaye/english-wolof-french-dataset", split="train", streaming=True)
iterator = iter(streaming_dataset)
sample = next(iterator)
sample = next(iterator)
sample = next(iterator)
# Preprocess audio
input_features = processor(sample["en_audio"]["audio"]["array"],
sampling_rate=sample["en_audio"]["audio"]["sampling_rate"],
return_tensors="pt").input_features.to(device)
# Generate transcription
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print("Correct sentence:", sample["en"])
print("Transcription:", transcription[0])
Using Gradio Interface
! pip install gradio
from transformers import pipeline
import gradio as gr
import numpy as np
# Load model pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline(task="automatic-speech-recognition", model="bilalfaye/whisper-medium-english-2-wolof", device=device)
# Function for transcription
def transcribe(audio):
if audio is None:
return "No audio provided. Please try again."
if isinstance(audio, str):
waveform, sample_rate = torchaudio.load(audio)
elif isinstance(audio, tuple): # Case microphone (Gradio donne un tuple (fichier, sample_rate))
waveform, sample_rate = torchaudio.load(audio[0])
else:
return "Invalid audio input format."
if waveform.shape[0] > 1:
mono_audio = waveform.mean(dim=0, keepdim=True)
else:
mono_audio = waveform
target_sample_rate = 16000
if sample_rate != target_sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
mono_audio = resampler(mono_audio)
sample_rate = target_sample_rate
mono_audio = mono_audio.squeeze(0).numpy().astype(np.float32)
result = pipe({"array": mono_audio, "sampling_rate": sample_rate})
return result['text']
# Create Gradio interfaces
interface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["upload", "microphone"], type="filepath"),
outputs="text",
title="Whisper Medium English Translation",
description="Record audio in English and translate it to Wolof using a fine-tuned Whisper medium model.",
#live=True,
)
app = gr.TabbedInterface(
[interface],
["Use Uploaded File or Microphone"]
)
app.launch(debug=True, share=True)
Author
- Bilal FAYE
- Downloads last month
- 10
Model tree for bilalfaye/whisper-medium-english-2-wolof
Base model
openai/whisper-medium