A model for mapping abstract sentence descriptions to sentences that fit the descriptions. Trained on Pubmed sentences. Use load_finetuned_model to load the query and sentence encoder, and encode_batch() to encode a sentence with the model.


from transformers import AutoTokenizer, AutoModel
import torch

def load_finetuned_model():


        sentence_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed", revision="71f4539120e29024adc618173a1ed5fd230ac249")
        query_encoder = AutoModel.from_pretrained("biu-nlp/abstract-sim-query-pubmed", revision="8d34676d80a39bcbc5a1d2eec13e6f8078496215")
        tokenizer = AutoTokenizer.from_pretrained("biu-nlp/abstract-sim-sentence-pubmed")
        return tokenizer, query_encoder, sentence_encoder


def encode_batch(model, tokenizer, sentences, device):
    input_ids = tokenizer(sentences, padding=True, max_length=128, truncation=True, return_tensors="pt",
                          add_special_tokens=True).to(device)
    features = model(**input_ids)[0]

    features =  torch.sum(features[:,:,:] * input_ids["attention_mask"][:,:].unsqueeze(-1), dim=1) / torch.clamp(torch.sum(input_ids["attention_mask"][:,:], dim=1, keepdims=True), min=1e-9)

    return features
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train biu-nlp/abstract-sim-query-pubmed