SentenceTransformer based on microsoft/deberta-v3-small
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAll")
sentences = [
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
'The swimmer almost drowned after being sucked under a fast current.',
'A group of people wait in a line.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7641 |
spearman_cosine |
0.7637 |
pearson_manhattan |
0.7809 |
spearman_manhattan |
0.784 |
pearson_euclidean |
0.7714 |
spearman_euclidean |
0.7751 |
pearson_dot |
0.5877 |
spearman_dot |
0.601 |
pearson_max |
0.7809 |
spearman_max |
0.784 |
Binary Classification
Metric |
Value |
cosine_accuracy |
0.6774 |
cosine_accuracy_threshold |
0.583 |
cosine_f1 |
0.721 |
cosine_f1_threshold |
0.5085 |
cosine_precision |
0.6137 |
cosine_recall |
0.8737 |
cosine_ap |
0.7219 |
dot_accuracy |
0.6389 |
dot_accuracy_threshold |
45.1017 |
dot_f1 |
0.709 |
dot_f1_threshold |
32.4594 |
dot_precision |
0.5775 |
dot_recall |
0.9181 |
dot_ap |
0.6795 |
manhattan_accuracy |
0.6625 |
manhattan_accuracy_threshold |
158.2949 |
manhattan_f1 |
0.7041 |
manhattan_f1_threshold |
178.5048 |
manhattan_precision |
0.5921 |
manhattan_recall |
0.8684 |
manhattan_ap |
0.7054 |
euclidean_accuracy |
0.6579 |
euclidean_accuracy_threshold |
7.9514 |
euclidean_f1 |
0.7015 |
euclidean_f1_threshold |
9.0452 |
euclidean_precision |
0.5889 |
euclidean_recall |
0.8675 |
euclidean_ap |
0.7024 |
max_accuracy |
0.6774 |
max_accuracy_threshold |
158.2949 |
max_f1 |
0.721 |
max_f1_threshold |
178.5048 |
max_precision |
0.6137 |
max_recall |
0.9181 |
max_ap |
0.7219 |
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns:
sentence1
, sentence2
, and label
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
label |
type |
string |
string |
int |
details |
- min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
|
- min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
|
|
- Samples:
sentence1 |
sentence2 |
label |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
Children smiling and waving at camera |
There are children present |
0 |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
0 |
- Loss:
AdaptiveLayerLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
AdaptiveLayerLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 1,
"prior_layers_weight": 1,
"kl_div_weight": 1.2,
"kl_temperature": 1.2
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
learning_rate
: 5e-06
weight_decay
: 1e-07
warmup_ratio
: 0.33
save_safetensors
: False
fp16
: True
push_to_hub
: True
hub_model_id
: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAlln
hub_strategy
: checkpoint
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-06
weight_decay
: 1e-07
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 3
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.33
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: False
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: True
resume_from_checkpoint
: None
hub_model_id
: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerAlln
hub_strategy
: checkpoint
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
max_ap |
spearman_cosine |
None |
0 |
- |
5.4171 |
- |
0.4276 |
0.1501 |
1474 |
4.9879 |
- |
- |
- |
0.3000 |
2947 |
- |
2.6463 |
0.6840 |
- |
0.3001 |
2948 |
3.2669 |
- |
- |
- |
0.4502 |
4422 |
2.6363 |
- |
- |
- |
0.6000 |
5894 |
- |
1.8436 |
0.7014 |
- |
0.6002 |
5896 |
2.192 |
- |
- |
- |
0.7503 |
7370 |
0.8208 |
- |
- |
- |
0.9000 |
8841 |
- |
1.5551 |
0.7065 |
- |
0.9003 |
8844 |
0.6161 |
- |
- |
- |
1.0504 |
10318 |
1.0301 |
- |
- |
- |
1.2000 |
11788 |
- |
1.1883 |
0.7131 |
- |
1.2004 |
11792 |
1.8209 |
- |
- |
- |
1.3505 |
13266 |
1.6887 |
- |
- |
- |
1.5001 |
14735 |
- |
1.1067 |
0.7119 |
- |
1.5006 |
14740 |
1.6114 |
- |
- |
- |
1.6506 |
16214 |
1.0691 |
- |
- |
- |
1.8001 |
17682 |
- |
1.0872 |
0.7183 |
- |
1.8007 |
17688 |
0.3982 |
- |
- |
- |
1.9507 |
19162 |
0.3659 |
- |
- |
- |
2.1001 |
20629 |
- |
0.9642 |
0.7221 |
- |
2.1008 |
20636 |
1.1702 |
- |
- |
- |
2.2508 |
22110 |
1.4984 |
- |
- |
- |
2.4001 |
23576 |
- |
0.9437 |
0.7200 |
- |
2.4009 |
23584 |
1.4609 |
- |
- |
- |
2.5510 |
25058 |
1.4477 |
- |
- |
- |
2.7001 |
26523 |
- |
0.9428 |
0.7216 |
- |
2.7010 |
26532 |
0.5802 |
- |
- |
- |
2.8511 |
28006 |
0.3297 |
- |
- |
- |
3.0 |
29469 |
- |
0.9532 |
0.7219 |
- |
None |
0 |
- |
2.4079 |
0.7219 |
0.7637 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AdaptiveLayerLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}