Update README.md
Browse files
README.md
CHANGED
@@ -39,19 +39,29 @@ login("Huggingface access token")
|
|
39 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
40 |
peft_model_name="bpavlsh/Mistral-crypto-news"
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
44 |
device_map="auto", torch_dtype="auto")
|
45 |
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
46 |
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
You are an expert in analyzing news for fake content, propaganda, and offensive language.
|
51 |
-
<</SYS>>
|
52 |
|
53 |
-
|
|
|
|
|
54 |
|
|
|
|
|
55 |
|
56 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
57 |
output = model.generate(**inputs, max_new_tokens=1500)
|
|
|
39 |
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
40 |
peft_model_name="bpavlsh/Mistral-crypto-news"
|
41 |
|
42 |
+
#Choose prompt query
|
43 |
+
prompt_query_1="Generate a knowledge graph from cryptocurrency news:"
|
44 |
+
prompt_query_2="Generate summaries of cryptocurrency news and detect sentiment signals:"
|
45 |
+
prompt_query_3="Create a JSON representation of the summary of cryptocurrency news:"
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
48 |
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
49 |
device_map="auto", torch_dtype="auto")
|
50 |
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
51 |
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
+
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
54 |
+
device_map="auto", torch_dtype="auto")
|
55 |
+
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
56 |
|
57 |
+
text=""" News text for analysis, from 1Kb to 10Kb """
|
|
|
|
|
58 |
|
59 |
+
prompt = f"""<s>[INST] <<SYS>>
|
60 |
+
You are an expert in analyzing cryptocurrency news.
|
61 |
+
<</SYS>>
|
62 |
|
63 |
+
{prompt_query_1}
|
64 |
+
{text} [/INST]"""
|
65 |
|
66 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
67 |
output = model.generate(**inputs, max_new_tokens=1500)
|