See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-4B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
datasets:
- path: "train_dataset_updated.jsonl"
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
output_dir: ./outputs/out-4b/
sequence_len: 2048
sample_packing: true
flex_attention: true
pad_to_sequence_len: true
flex_attn_compile_kwargs:
dynamic: false
mode: max-autotune-no-cudagraphs
wandb_project: openie-qwen3
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
bf16: true
tf32: true
resume_from_checkpoint:
logging_steps: 1
evals_per_epoch: 1
saves_per_epoch: 1
warmup_steps: 10
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
outputs/out-4b/
This model is a fine-tuned version of Qwen/Qwen3-4B on the train_dataset_updated.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 27
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support