MishaF's picture
Update README.md
73b2918 verified
---
license: other
license_name: bria-2.3
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
inference: false
tags:
- text-to-image
- controlnet model
- legal liability
- commercial use
extra_gated_description: BRIA 2.3 ControlNet-Background Generation requires access to BRIA 2.3 Text-to-Image model
extra_gated_heading: "Fill in this form to get access"
extra_gated_fields:
Name:
type: text
Company/Org name:
type: text
Org Type (Early/Growth Startup, Enterprise, Academy):
type: text
Role:
type: text
Country:
type: text
Email:
type: text
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below:
type: checkbox
---
# BRIA-2.3-ControlNet-Background-Generation, Model Card
BRIA 2.3 ControlNet-Background Generation, trained on the foundation of [BRIA 2.3 Text-to-Image](https://huggingface.co/briaai/BRIA-2.3), enables the generation of high-quality images guided by a textual prompt and the extracted background mask estimation from an input image. This allows for the creation of different background variations of an image, all sharing the same foreground.
### Get Access
BRIA 2.3 ControlNet-Background Generation requires access to BRIA 2.3 Foundationmodel. For more information, [click here](https://huggingface.co/briaai/BRIA-2.3).
- **API Endpoint**: [Bria.ai](https://platform.bria.ai/console/api/image-editing), [fal.ai](https://fal.ai/models/fal-ai/bria/background/replace)
- **ComfyUI**: [Use it in workflows](https://github.com/Bria-AI/ComfyUI-BRIA-API)
For more information, please visit our [website](https://bria.ai/).
Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
[CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-Background-Generation)
![examples](bg_img.png)
### Model Description
- **Developed by:** BRIA AI
- **Model type:** [ControlNet](https://huggingface.co/docs/diffusers/using-diffusers/controlnet) for Latent diffusion
- **License:** [bria-2.3](https://bria.ai/bria-huggingface-model-license-agreement/)
- **Model Description:** ControlNet Background-Generation for BRIA 2.3 Text-to-Image model. The model generates images guided by text and the background mask.
- **Resources for more information:** [BRIA AI](https://bria.ai/)
## Usage
Installation
Install huggingface_hub and login if need to - \
https://huggingface.co/docs/huggingface_hub/en/guides/cli#getting-started \
https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication
Download and install BRIA-2.3-ControlNet-BG-Gen
```bash
pip install -qr https://huggingface.co/briaai/BRIA-2.3-ControlNet-BG-Gen/resolve/main/requirements.txt
```
```bash
torch
torchvision
pillow
numpy
scikit-image
Diffusers==0.31.0
transformers>=4.39.1
```
```bash
huggingface-cli download briaai/BRIA-2.3-ControlNet-BG-Gen --include replace_bg/* --local-dir . --quiet
```
Run Inpainting script
```python
import torch
from diffusers import (
AutoencoderKL,
EulerAncestralDiscreteScheduler,
)
from diffusers.utils import load_image
from replace_bg.model.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from replace_bg.model.controlnet import ControlNetModel
from replace_bg.utilities import resize_image, remove_bg_from_image, paste_fg_over_image, get_control_image_tensor
controlnet = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-BG-Gen", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16, vae=vae).to('cuda:0')
pipe.scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
steps_offset=1
)
image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
image = load_image(image_path)
image = resize_image(image)
mask = remove_bg_from_image(image_path)
control_tensor = get_control_image_tensor(pipe.vae, image, mask)
prompt = "in a zoo"
negative_prompt = "Logo,Watermark,Text,Ugly,Bad proportions,Bad quality,Out of frame,Mutation"
generator = torch.Generator(device="cuda:0").manual_seed(0)
gen_img = pipe(
negative_prompt=negative_prompt,
prompt=prompt,
controlnet_conditioning_scale=1.0,
num_inference_steps=50,
image = control_tensor,
generator=generator
).images[0]
result_image = paste_fg_over_image(gen_img, image, mask)
```