From Seikaijyu/RWKV6-3B-Chn-UnlimitedRP-mini-chat: https://huggingface.co/Seikaijyu/RWKV6-3B-Chn-UnlimitedRP-mini-chat

Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.

In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.

根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点

在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。

Downloads last month
415
GGUF
Model size
3.1B params
Architecture
rwkv6

4-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for btaskel/RWKV6-3B-Chn-UnlimitedRP-mini-chat-GGUF

Quantized
(1)
this model