btaskel's picture
Create README.md
f82e87b verified
|
raw
history blame
745 Bytes
metadata
language:
  - zh
base_model:
  - Seikaijyu/RWKV7-2.9B-v3-UnlimitedRP-mini-novel-chat-preview
tags:
  - quantization
quantized_by: btaskel

From Seikaijyu/RWKV7-2.9B-v3-UnlimitedRP-mini-novel-chat-preview: https://huggingface.co/Seikaijyu/RWKV7-2.9B-v3-UnlimitedRP-mini-novel-chat-preview

Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.

In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.

根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点

在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。