16052025_xlm_roberta_large_test_linsearch_only_abstract

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3318
  • Accuracy: 0.5931
  • F1 Macro: 0.5650
  • Precision Macro: 0.5755
  • Recall Macro: 0.5602

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro
1.3362 0.9999 7024 1.3026 0.5520 0.4904 0.5266 0.4959
1.2241 1.9999 14048 1.2036 0.5773 0.5348 0.5535 0.5395
1.1337 2.9999 21072 1.1903 0.5760 0.5303 0.5466 0.5278
1.069 3.9999 28096 1.1570 0.5876 0.5418 0.5564 0.5439
0.9832 4.9999 35120 1.1723 0.5872 0.5461 0.5570 0.5461
0.9197 5.9999 42144 1.1752 0.5871 0.5455 0.5456 0.5572
0.8278 6.9999 49168 1.2078 0.5928 0.5537 0.5616 0.5589
0.7568 7.9999 56192 1.2398 0.5923 0.5563 0.5612 0.5568
0.6863 8.9999 63216 1.2840 0.5937 0.5556 0.5723 0.5465
0.63 9.9999 70240 1.3318 0.5931 0.5650 0.5755 0.5602

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
223
Safetensors
Model size
560M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for c-ho/16052025_xlm_roberta_large_test_linsearch_only_abstract

Finetuned
(431)
this model