c-ho's picture
miltilingual_dbert_linsearch_only_abstract
45c5c28 verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: miltilingual_dbert_linsearch_only_abstract
    results: []

miltilingual_dbert_linsearch_only_abstract

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1201
  • Accuracy: 0.6505
  • F1 Macro: 0.5674
  • Precision Macro: 0.5715
  • Recall Macro: 0.5690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro
2.7395 1.0 1233 1.6602 0.5501 0.3447 0.3829 0.3645
1.5662 2.0 2466 1.2526 0.6228 0.5112 0.5447 0.5114
1.2526 3.0 3699 1.1599 0.6396 0.5478 0.5537 0.5551
1.1111 4.0 4932 1.1279 0.6469 0.5645 0.5619 0.5745
0.9426 5.0 6165 1.1201 0.6505 0.5674 0.5715 0.5690
0.8696 6.0 7398 1.1415 0.6462 0.5620 0.5645 0.5647
0.8271 7.0 8631 1.1486 0.6467 0.5657 0.5670 0.5667
0.7772 8.0 9864 1.1642 0.6477 0.5670 0.5644 0.5723
0.7247 9.0 11097 1.1731 0.6456 0.5644 0.5633 0.5676
0.7072 9.9922 12320 1.1731 0.6463 0.5658 0.5657 0.5677

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.4.1
  • Tokenizers 0.21.1