ModernBERT Environment Claims Classifier

This model is a fine-tuned version of answerdotai/ModernBERT-base trained on the QuotaClimat FrugalAIChallenge dataset.

  • Data augmentation

Training Details

The model was trained using the following configuration:

training_args = TrainingArguments(
   output_dir="ModernBERT-envclaims-v0",
   per_device_train_batch_size=32,
   per_device_eval_batch_size=16,
   learning_rate=2e-5,
   num_train_epochs=3,
   bf16=True,
   optim="adamw_torch_fused",
   
   # Logging & Evaluation
   logging_strategy="steps", 
   logging_steps=100,
   eval_strategy="epoch",
   save_strategy="epoch", 
   save_total_limit=2,
   load_best_model_at_end=True,
   metric_for_best_model="f1",
   
   # Training optimization
   weight_decay=0.01,
   lr_scheduler_type="cosine",
   warmup_ratio=0.1,
   
   # Hub parameters
   push_to_hub=True,
   hub_strategy="every_save"
)

Model Performance

The model achieved an F1 score of 0.745 on the evaluation set.

Usage

You can use this model directly with the Hugging Face Transformers library:

from transformers import pipeline
classifier = pipeline(
    "text-classification",
    modelcamillebrl/ModernBERT-envclaims-v1"
)
text = "Your claim here"
class_predicted = classifier(text)

The model classifies texts into the following categories:

  • Label 0: not_relevant
  • Label 1: not_happening
  • Label 2: not_human
  • Label 3: not_bad
  • Label 4: solutions_harmful_unnecessary
  • Label 5: science_unreliable
  • Label 6: proponents_biased
  • Label 7: fossil_fuels_needed
Downloads last month
0
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.