he-cantillation

This model is a fine-tuned version of ivrit-ai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4107
  • Wer: 36.2146
  • Avg Precision Exact: 0.4891
  • Avg Recall Exact: 0.4995
  • Avg F1 Exact: 0.4932
  • Avg Precision Letter Shift: 0.5095
  • Avg Recall Letter Shift: 0.5218
  • Avg F1 Letter Shift: 0.5143
  • Avg Precision Word Level: 0.5211
  • Avg Recall Word Level: 0.5357
  • Avg F1 Word Level: 0.5263
  • Avg Precision Word Shift: 0.6939
  • Avg Recall Word Shift: 0.7234
  • Avg F1 Word Shift: 0.7047
  • Precision Median Exact: 0.4432
  • Recall Median Exact: 0.4756
  • F1 Median Exact: 0.4528
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.0
  • Recall Min Word Shift: 0.0
  • F1 Min Word Shift: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 60000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
No log 0.0001 1 7.1601 109.4023 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1361 0.2962 2500 0.6842 62.4024 0.2897 0.2982 0.2919 0.3222 0.3329 0.3249 0.3400 0.3543 0.3446 0.5235 0.5550 0.5339 0.1505 0.1562 0.1538 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0633 0.5925 5000 0.5766 51.9556 0.3589 0.3642 0.3604 0.3909 0.3982 0.3927 0.4080 0.4161 0.4098 0.6144 0.6383 0.6218 0.2 0.2185 0.2122 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0629 0.8887 7500 0.5497 53.1810 0.3695 0.3923 0.3759 0.3997 0.4249 0.4062 0.4143 0.4424 0.4213 0.5923 0.6461 0.6078 0.2222 0.2639 0.2381 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0375 1.1850 10000 0.5146 45.5717 0.4020 0.4168 0.4084 0.4303 0.4478 0.4374 0.4451 0.4634 0.4521 0.6430 0.6809 0.6579 0.2571 0.2857 0.2675 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0513 1.4812 12500 0.4789 47.3763 0.4082 0.4225 0.4140 0.4363 0.4528 0.4429 0.4515 0.4685 0.4581 0.6408 0.6728 0.6531 0.2698 0.2941 0.2798 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0407 1.7775 15000 0.4574 45.7832 0.4313 0.4414 0.4353 0.4612 0.4728 0.4654 0.4754 0.4873 0.4795 0.6548 0.6794 0.6639 0.3333 0.3438 0.3393 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0228 2.0737 17500 0.4692 45.7453 0.4131 0.4225 0.4167 0.4392 0.4496 0.4427 0.4549 0.4671 0.4590 0.6411 0.6686 0.6508 0.2587 0.2759 0.2659 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0203 2.3699 20000 0.4669 43.5424 0.4200 0.4337 0.4250 0.4432 0.4599 0.4493 0.4563 0.4741 0.4622 0.6356 0.6750 0.6493 0.2795 0.3077 0.2919 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0469 2.6662 22500 0.4451 42.7925 0.4403 0.4521 0.4447 0.4662 0.4808 0.4714 0.4814 0.4968 0.4867 0.6632 0.6933 0.6740 0.3118 0.3333 0.3144 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0224 2.9624 25000 0.4347 42.4672 0.4382 0.4533 0.4443 0.4603 0.4782 0.4674 0.4721 0.4924 0.4799 0.6405 0.6819 0.6567 0.3204 0.3536 0.3312 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0435 3.2587 27500 0.4208 40.8420 0.4435 0.4582 0.4493 0.4658 0.4829 0.4724 0.4791 0.4971 0.4860 0.6601 0.6978 0.6746 0.3333 0.3529 0.3352 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0379 3.5549 30000 0.4347 42.3782 0.4409 0.4491 0.4438 0.4652 0.4750 0.4684 0.4796 0.4898 0.4822 0.6691 0.6910 0.6760 0.3066 0.3295 0.3136 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0099 3.8512 32500 0.4303 43.9873 0.4492 0.4603 0.4534 0.4726 0.4869 0.4776 0.4849 0.5005 0.4902 0.6510 0.6820 0.6619 0.3333 0.3571 0.3388 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0185 4.1474 35000 0.4299 41.5102 0.4465 0.4562 0.4502 0.4709 0.4819 0.4749 0.4856 0.4980 0.4898 0.6627 0.6909 0.6726 0.3239 0.3483 0.3333 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0077 4.4437 37500 0.4209 41.2943 0.4518 0.4630 0.4559 0.4754 0.4885 0.4800 0.4885 0.5024 0.4932 0.6663 0.6955 0.6756 0.3429 0.3684 0.3552 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0126 4.7399 40000 0.4175 38.7048 0.4651 0.4746 0.4687 0.4893 0.5012 0.4936 0.5021 0.5152 0.5069 0.6841 0.7125 0.6943 0.3704 0.3974 0.3851 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0035 5.0361 42500 0.4141 37.2328 0.4746 0.4863 0.4793 0.4966 0.5105 0.5021 0.5085 0.5241 0.5143 0.6849 0.7159 0.6969 0.3974 0.4231 0.4114 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0085 5.3324 45000 0.4234 40.2366 0.4689 0.4787 0.4727 0.4922 0.5037 0.4962 0.5055 0.5182 0.5093 0.6792 0.7057 0.6880 0.375 0.4054 0.3885 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0141 5.6286 47500 0.4107 38.0483 0.4664 0.4765 0.4703 0.4871 0.4991 0.4916 0.4988 0.5122 0.5033 0.6747 0.7043 0.6856 0.3675 0.3921 0.3846 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0026 5.9249 50000 0.4120 37.9521 0.4745 0.4862 0.4788 0.4953 0.5094 0.5004 0.5071 0.5226 0.5127 0.6811 0.7128 0.6928 0.4 0.4167 0.4065 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0059 6.2211 52500 0.4140 36.1839 0.4890 0.4993 0.4931 0.5123 0.5244 0.5167 0.5241 0.5372 0.5288 0.6995 0.7273 0.7099 0.4444 0.4674 0.4528 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0069 6.5174 55000 0.4083 37.5086 0.4888 0.4982 0.4924 0.5093 0.5203 0.5133 0.5221 0.5340 0.5261 0.6960 0.7203 0.7042 0.4329 0.4545 0.4430 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0042 6.8136 57500 0.4116 36.6785 0.4906 0.5013 0.4948 0.5110 0.5233 0.5157 0.5225 0.5356 0.5274 0.6950 0.7236 0.7059 0.4336 0.4615 0.4444 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.004 7.1098 60000 0.4107 36.2146 0.4891 0.4995 0.4932 0.5095 0.5218 0.5143 0.5211 0.5357 0.5263 0.6939 0.7234 0.7047 0.4432 0.4756 0.4528 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.7.0+cu126
  • Datasets 2.12.0
  • Tokenizers 0.20.1
Downloads last month
103
Safetensors
Model size
809M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cantillation/Teamim-IvritAI-large-v3-turbo-new_WeightDecay-0.005_Augmented_WithSRT_date-23-04-2025

Finetuned
(4)
this model