he-cantillation

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3512
  • Wer: 37.4546
  • Avg Precision Exact: 0.4711
  • Avg Recall Exact: 0.4799
  • Avg F1 Exact: 0.4744
  • Avg Precision Letter Shift: 0.4938
  • Avg Recall Letter Shift: 0.5053
  • Avg F1 Letter Shift: 0.4978
  • Avg Precision Word Level: 0.5066
  • Avg Recall Word Level: 0.5185
  • Avg F1 Word Level: 0.5107
  • Avg Precision Word Shift: 0.6878
  • Avg Recall Word Shift: 0.7144
  • Avg F1 Word Shift: 0.6977
  • Precision Median Exact: 0.4
  • Recall Median Exact: 0.4353
  • F1 Median Exact: 0.4211
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.0
  • Recall Min Word Shift: 0.0
  • F1 Min Word Shift: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
0.2285 0.1185 1000 0.9052 73.4897 0.1965 0.2129 0.2032 0.2284 0.2502 0.2371 0.2475 0.2706 0.2563 0.4222 0.4817 0.4463 0.0938 0.1127 0.1039 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1115 0.2370 2000 0.6479 56.3993 0.3312 0.3484 0.3382 0.3643 0.3860 0.3726 0.3819 0.4025 0.3891 0.5813 0.6327 0.6002 0.2088 0.2353 0.2193 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0859 0.3555 3000 0.5962 53.4888 0.3662 0.3739 0.3690 0.3988 0.4088 0.4023 0.4157 0.4260 0.4188 0.6048 0.6353 0.6160 0.2300 0.2353 0.2286 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0889 0.4740 4000 0.5403 50.5361 0.3794 0.3933 0.3842 0.4088 0.4254 0.4145 0.4255 0.4424 0.4310 0.6163 0.6560 0.6303 0.25 0.2778 0.2623 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0534 0.5925 5000 0.5052 49.8694 0.3836 0.3903 0.3853 0.4164 0.4243 0.4182 0.4330 0.4421 0.4345 0.6240 0.6507 0.6330 0.25 0.2632 0.2543 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0388 0.7110 6000 0.4644 47.3135 0.3987 0.4090 0.4020 0.4284 0.4409 0.4323 0.4440 0.4569 0.4476 0.6367 0.6685 0.6477 0.2857 0.3077 0.2909 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0485 0.8295 7000 0.4162 45.5045 0.4286 0.4373 0.4318 0.4570 0.4668 0.4602 0.4710 0.4813 0.4740 0.6585 0.6821 0.6666 0.3220 0.3333 0.3243 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0556 0.9480 8000 0.4246 45.8386 0.4247 0.4369 0.4298 0.4519 0.4657 0.4571 0.4682 0.4808 0.4723 0.6570 0.6876 0.6684 0.3 0.3333 0.3131 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0157 1.0665 9000 0.4023 43.3484 0.4395 0.4483 0.4429 0.4669 0.4766 0.4702 0.4820 0.4910 0.4848 0.6722 0.6952 0.6805 0.3333 0.3507 0.3436 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0295 1.1850 10000 0.4139 44.4629 0.4229 0.4358 0.4276 0.4487 0.4645 0.4542 0.4629 0.4796 0.4683 0.6422 0.6758 0.6543 0.2927 0.3171 0.3000 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.035 1.3035 11000 0.4131 43.0376 0.4287 0.4419 0.4340 0.4505 0.4668 0.4568 0.4643 0.4813 0.4704 0.6392 0.6786 0.6538 0.2934 0.3333 0.3068 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0318 1.4220 12000 0.3858 41.0069 0.4437 0.4532 0.4471 0.4674 0.4793 0.4713 0.4808 0.4936 0.4849 0.6617 0.6924 0.6727 0.3263 0.3514 0.3352 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0225 1.5405 13000 0.3853 43.1748 0.4364 0.4438 0.4391 0.4604 0.4696 0.4636 0.4731 0.4836 0.4768 0.6536 0.6757 0.6617 0.3231 0.3333 0.3269 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0138 1.6590 14000 0.3712 40.2381 0.4454 0.4547 0.4487 0.4688 0.4795 0.4726 0.4822 0.4944 0.4861 0.6652 0.6926 0.6751 0.3333 0.3624 0.3478 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0244 1.7775 15000 0.3491 40.3840 0.4552 0.4607 0.4570 0.4789 0.4854 0.4810 0.4914 0.4990 0.4938 0.6692 0.6887 0.6760 0.35 0.3636 0.3589 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0327 1.8960 16000 0.3481 38.7077 0.4564 0.4673 0.4604 0.4795 0.4928 0.4843 0.4935 0.5073 0.4981 0.6744 0.7053 0.6854 0.3563 0.3767 0.3636 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.012 2.0145 17000 0.3537 38.2292 0.4712 0.4797 0.4745 0.4942 0.5046 0.4979 0.5071 0.5173 0.5103 0.6878 0.7134 0.6973 0.4049 0.4231 0.4079 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0048 2.1330 18000 0.3589 38.2672 0.4642 0.4732 0.4677 0.4870 0.4989 0.4912 0.4992 0.5110 0.5029 0.6806 0.7064 0.6900 0.3835 0.4128 0.3883 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0067 2.2515 19000 0.3534 37.7172 0.4712 0.4786 0.4740 0.4944 0.5045 0.4979 0.5070 0.5170 0.5101 0.6912 0.7149 0.6997 0.4 0.4326 0.4194 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.007 2.3699 20000 0.3512 37.4546 0.4711 0.4799 0.4744 0.4938 0.5053 0.4978 0.5066 0.5185 0.5107 0.6878 0.7144 0.6977 0.4 0.4353 0.4211 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 2.12.0
  • Tokenizers 0.20.1
Downloads last month
3
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cantillation/Teamim-medium_WeightDecay-0.005_Augmented_Old-Data_WithSRT_date-05-04-2025

Finetuned
(594)
this model