he-cantillation

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7623
  • Wer: 98.8781
  • Avg Precision Exact: 0.0291
  • Avg Recall Exact: 0.0505
  • Avg F1 Exact: 0.0356
  • Avg Precision Letter Shift: 0.0493
  • Avg Recall Letter Shift: 0.0876
  • Avg F1 Letter Shift: 0.0605
  • Avg Precision Word Level: 0.0685
  • Avg Recall Word Level: 0.1200
  • Avg F1 Word Level: 0.0833
  • Avg Precision Word Shift: 0.1707
  • Avg Recall Word Shift: 0.3059
  • Avg F1 Word Shift: 0.2088
  • Precision Median Exact: 0.0
  • Recall Median Exact: 0.0
  • F1 Median Exact: 0.0
  • Precision Max Exact: 0.4444
  • Recall Max Exact: 1.0
  • F1 Max Exact: 0.4286
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.0
  • Recall Min Word Shift: 0.0
  • F1 Min Word Shift: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
0.0276 3.0030 20000 3.0853 98.7760 0.0336 0.0472 0.0380 0.0581 0.0831 0.0658 0.0801 0.1144 0.0904 0.2032 0.3029 0.2334 0.0213 0.0303 0.0267 0.6667 0.6667 0.6667 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0026 6.0060 40000 3.8257 98.8227 0.0303 0.0497 0.0364 0.0528 0.0880 0.0637 0.0728 0.1208 0.0877 0.1812 0.3095 0.2204 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0004 9.0090 60000 4.3074 99.0124 0.0283 0.0504 0.0347 0.0476 0.0872 0.0590 0.0641 0.1169 0.0792 0.1600 0.2986 0.1987 0.0 0.0 0.0 1.0 1.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0001 12.0120 80000 4.6534 98.8315 0.0295 0.0516 0.0361 0.0502 0.0882 0.0611 0.0687 0.1192 0.0826 0.1715 0.3112 0.2103 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 15.0150 100000 4.7623 98.8781 0.0291 0.0505 0.0356 0.0493 0.0876 0.0605 0.0685 0.1200 0.0833 0.1707 0.3059 0.2088 0.0 0.0 0.0 0.4444 1.0 0.4286 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 2.12.0
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
37.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cantillation/Teamim-tiny_WeightDecay-0.005_Augmented__date-10-04-2025

Finetuned
(1471)
this model