mt5-base_Nepali_News_Summarization_0
This model is a fine-tuned version of google/mt5-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3685
- Rouge-1 R: 0.3321
- Rouge-1 P: 0.3218
- Rouge-1 F: 0.3186
- Rouge-2 R: 0.1761
- Rouge-2 P: 0.1703
- Rouge-2 F: 0.1677
- Rouge-l R: 0.3234
- Rouge-l P: 0.3133
- Rouge-l F: 0.3102
- Gen Len: 15.7133
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Rouge-1 R |
Rouge-1 P |
Rouge-1 F |
Rouge-2 R |
Rouge-2 P |
Rouge-2 F |
Rouge-l R |
Rouge-l P |
Rouge-l F |
Gen Len |
1.8844 |
1.0 |
10191 |
1.4867 |
0.31 |
0.3133 |
0.3024 |
0.1576 |
0.1605 |
0.1531 |
0.3015 |
0.3048 |
0.2942 |
15.2667 |
1.7381 |
2.0 |
20382 |
1.4401 |
0.3203 |
0.3104 |
0.3068 |
0.1675 |
0.162 |
0.1592 |
0.3121 |
0.3026 |
0.299 |
15.699 |
1.6401 |
3.0 |
30573 |
1.3685 |
0.3321 |
0.3218 |
0.3186 |
0.1761 |
0.1703 |
0.1677 |
0.3234 |
0.3133 |
0.3102 |
15.7133 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1