panels_detection_rtdetr_r100_augmented
This model is a fine-tuned version of PekingU/rtdetr_r101vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 14.2566
- Map: 0.2175
- Map 50: 0.2801
- Map 75: 0.2339
- Map Small: -1.0
- Map Medium: 0.1861
- Map Large: 0.2334
- Mar 1: 0.3663
- Mar 10: 0.5553
- Mar 100: 0.5854
- Mar Small: -1.0
- Mar Medium: 0.329
- Mar Large: 0.6411
- Map Radar (small): 0.1125
- Mar 100 Radar (small): 0.4786
- Map Ship management system (small): 0.5197
- Mar 100 Ship management system (small): 0.8908
- Map Radar (large): 0.0338
- Mar 100 Radar (large): 0.2248
- Map Ship management system (large): 0.5831
- Mar 100 Ship management system (large): 0.8843
- Map Ship management system (top): 0.6613
- Mar 100 Ship management system (top): 0.8712
- Map Ecdis (large): 0.2557
- Mar 100 Ecdis (large): 0.7561
- Map Visual observation (small): 0.1058
- Mar 100 Visual observation (small): 0.1521
- Map Ecdis (small): 0.047
- Mar 100 Ecdis (small): 0.7654
- Map Ship management system (table top): 0.2346
- Mar 100 Ship management system (table top): 0.6286
- Map Thruster control: 0.1786
- Mar 100 Thruster control: 0.5436
- Map Visual observation (left): 0.0349
- Mar 100 Visual observation (left): 0.75
- Map Visual observation (mid): 0.2246
- Mar 100 Visual observation (mid): 0.6687
- Map Visual observation (right): 0.0052
- Mar 100 Visual observation (right): 0.4774
- Map Bow thruster: 0.2361
- Mar 100 Bow thruster: 0.4897
- Map Me telegraph: 0.03
- Mar 100 Me telegraph: 0.2
- Classification Accuracy: 0.0903
- Classification Accuracy Ship management system (small): 0.4154
- Classification Accuracy Radar (small): 0.0179
- Classification Accuracy Radar (large): 0.0
- Classification Accuracy Visual observation (left): 0.0429
- Classification Accuracy Ship management system (table top): 0.0
- Classification Accuracy Thruster control: 0.0256
- Classification Accuracy Visual observation (mid): 0.0522
- Classification Accuracy Ship management system (top): 0.3173
- Classification Accuracy Ship management system (large): 0.0413
- Classification Accuracy Ecdis (large): 0.0877
- Classification Accuracy Visual observation (right): 0.0
- Classification Accuracy Visual observation (small): 0.0208
- Classification Accuracy Me telegraph: 0.1923
- Classification Accuracy Bow thruster: 0.0345
- Classification Accuracy Ecdis (small): 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Radar (small) | Mar 100 Radar (small) | Map Ship management system (small) | Mar 100 Ship management system (small) | Map Radar (large) | Mar 100 Radar (large) | Map Ship management system (large) | Mar 100 Ship management system (large) | Map Ship management system (top) | Mar 100 Ship management system (top) | Map Ecdis (large) | Mar 100 Ecdis (large) | Map Visual observation (small) | Mar 100 Visual observation (small) | Map Ecdis (small) | Mar 100 Ecdis (small) | Map Ship management system (table top) | Mar 100 Ship management system (table top) | Map Thruster control | Mar 100 Thruster control | Map Visual observation (left) | Mar 100 Visual observation (left) | Map Visual observation (mid) | Mar 100 Visual observation (mid) | Map Visual observation (right) | Mar 100 Visual observation (right) | Map Bow thruster | Mar 100 Bow thruster | Map Me telegraph | Mar 100 Me telegraph | Classification Accuracy | Classification Accuracy Ship management system (small) | Classification Accuracy Radar (small) | Classification Accuracy Radar (large) | Classification Accuracy Visual observation (left) | Classification Accuracy Ship management system (table top) | Classification Accuracy Thruster control | Classification Accuracy Visual observation (mid) | Classification Accuracy Ship management system (top) | Classification Accuracy Ship management system (large) | Classification Accuracy Ecdis (large) | Classification Accuracy Visual observation (right) | Classification Accuracy Visual observation (small) | Classification Accuracy Me telegraph | Classification Accuracy Bow thruster | Classification Accuracy Ecdis (small) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.0745 | 1.0 | 397 | 13.3384 | 0.2492 | 0.2799 | 0.2692 | -1.0 | 0.0781 | 0.2752 | 0.3739 | 0.5035 | 0.5179 | -1.0 | 0.1764 | 0.5709 | 0.3138 | 0.6625 | 0.2582 | 0.7415 | 0.6231 | 0.8806 | 0.7174 | 0.8901 | 0.1403 | 0.249 | 0.4495 | 0.8561 | 0.2673 | 0.5542 | 0.1286 | 0.7385 | 0.0287 | 0.04 | 0.0136 | 0.0769 | 0.1199 | 0.8529 | 0.6243 | 0.7522 | 0.0525 | 0.3849 | 0.0001 | 0.0276 | 0.0002 | 0.0615 | 0.1184 | 0.2462 | 0.1786 | 0.155 | 0.2714 | 0.0 | 0.0 | 0.2087 | 0.0096 | 0.124 | 0.1053 | 0.0 | 0.0417 | 0.0769 | 0.0345 | 0.0 |
10.6194 | 2.0 | 794 | 12.8017 | 0.2353 | 0.2753 | 0.2607 | -1.0 | 0.1056 | 0.2687 | 0.3513 | 0.5248 | 0.5727 | -1.0 | 0.2915 | 0.6338 | 0.2765 | 0.6393 | 0.2812 | 0.84 | 0.1872 | 0.5465 | 0.7308 | 0.9529 | 0.5067 | 0.7327 | 0.1323 | 0.7991 | 0.5556 | 0.7979 | 0.0885 | 0.6385 | 0.05 | 0.2286 | 0.2309 | 0.4897 | 0.0087 | 0.4971 | 0.4676 | 0.727 | 0.0033 | 0.5604 | 0.0105 | 0.1138 | 0.0 | 0.0269 | 0.1155 | 0.2154 | 0.125 | 0.0155 | 0.0571 | 0.0 | 0.0 | 0.1565 | 0.1538 | 0.2397 | 0.1228 | 0.0 | 0.1458 | 0.2308 | 0.0 | 0.0769 |
9.3747 | 3.0 | 1191 | 12.9274 | 0.2908 | 0.3358 | 0.3161 | -1.0 | 0.1738 | 0.3328 | 0.4501 | 0.6574 | 0.6929 | -1.0 | 0.4422 | 0.7565 | 0.4408 | 0.9125 | 0.3984 | 0.9077 | 0.2434 | 0.6674 | 0.8443 | 0.9603 | 0.5607 | 0.8712 | 0.0519 | 0.4114 | 0.558 | 0.7771 | 0.0484 | 0.7231 | 0.2593 | 0.6629 | 0.2785 | 0.641 | 0.0305 | 0.79 | 0.5335 | 0.887 | 0.0211 | 0.5679 | 0.0923 | 0.4138 | 0.0015 | 0.2 | 0.1097 | 0.2769 | 0.3036 | 0.0775 | 0.0286 | 0.1143 | 0.0513 | 0.1652 | 0.1827 | 0.0496 | 0.0175 | 0.0 | 0.1042 | 0.0385 | 0.2414 | 0.0385 |
8.5584 | 4.0 | 1588 | 13.1481 | 0.2582 | 0.3237 | 0.2803 | -1.0 | 0.1875 | 0.2811 | 0.3768 | 0.5958 | 0.6332 | -1.0 | 0.4125 | 0.6854 | 0.4776 | 0.8018 | 0.2294 | 0.8246 | 0.1273 | 0.4101 | 0.6917 | 0.8826 | 0.6564 | 0.8154 | 0.0791 | 0.6711 | 0.4123 | 0.7333 | 0.0095 | 0.6385 | 0.3179 | 0.5829 | 0.2624 | 0.5872 | 0.0081 | 0.6571 | 0.37 | 0.8322 | 0.0056 | 0.4981 | 0.211 | 0.4138 | 0.0149 | 0.15 | 0.0883 | 0.2154 | 0.3393 | 0.0233 | 0.0857 | 0.0857 | 0.0513 | 0.0522 | 0.2308 | 0.0165 | 0.0614 | 0.0 | 0.0 | 0.0 | 0.1379 | 0.0385 |
8.2229 | 5.0 | 1985 | 12.5362 | 0.3526 | 0.4073 | 0.3817 | -1.0 | 0.2086 | 0.3868 | 0.4674 | 0.6741 | 0.692 | -1.0 | 0.4149 | 0.7421 | 0.4901 | 0.9089 | 0.6574 | 0.9185 | 0.4427 | 0.6527 | 0.7716 | 0.9612 | 0.7027 | 0.9 | 0.1775 | 0.6921 | 0.4493 | 0.7292 | 0.0325 | 0.7308 | 0.3467 | 0.6486 | 0.2225 | 0.6 | 0.0557 | 0.8529 | 0.668 | 0.9348 | 0.0062 | 0.3491 | 0.2654 | 0.4172 | 0.0002 | 0.0846 | 0.1165 | 0.2769 | 0.3214 | 0.031 | 0.0286 | 0.1143 | 0.0256 | 0.1913 | 0.2115 | 0.1157 | 0.0614 | 0.0 | 0.0 | 0.0769 | 0.1724 | 0.0385 |
7.8006 | 6.0 | 2382 | 13.8322 | 0.2236 | 0.2836 | 0.2395 | -1.0 | 0.1455 | 0.246 | 0.3671 | 0.5454 | 0.5783 | -1.0 | 0.347 | 0.6441 | 0.2232 | 0.6786 | 0.4449 | 0.8677 | 0.0323 | 0.1093 | 0.5672 | 0.8942 | 0.6818 | 0.8529 | 0.1653 | 0.693 | 0.1408 | 0.3146 | 0.016 | 0.6923 | 0.1955 | 0.5657 | 0.209 | 0.5615 | 0.0235 | 0.7143 | 0.3935 | 0.7974 | 0.003 | 0.2811 | 0.216 | 0.4207 | 0.0417 | 0.2308 | 0.1078 | 0.4 | 0.1071 | 0.0078 | 0.1286 | 0.0571 | 0.0513 | 0.1391 | 0.2885 | 0.0744 | 0.0439 | 0.0 | 0.0 | 0.0385 | 0.1379 | 0.0 |
7.3399 | 7.0 | 2779 | 14.1298 | 0.2021 | 0.2472 | 0.2186 | -1.0 | 0.1629 | 0.2198 | 0.3594 | 0.5796 | 0.6109 | -1.0 | 0.4096 | 0.6685 | 0.1335 | 0.7286 | 0.5139 | 0.9077 | 0.046 | 0.2574 | 0.5499 | 0.9 | 0.6972 | 0.8846 | 0.2344 | 0.7825 | 0.006 | 0.1125 | 0.0324 | 0.6731 | 0.1763 | 0.5771 | 0.1288 | 0.5487 | 0.0376 | 0.8157 | 0.3048 | 0.7809 | 0.0048 | 0.4472 | 0.1457 | 0.4586 | 0.0202 | 0.2885 | 0.1068 | 0.4923 | 0.0357 | 0.0078 | 0.0857 | 0.0286 | 0.0769 | 0.0696 | 0.3462 | 0.0496 | 0.0877 | 0.0189 | 0.0 | 0.0769 | 0.069 | 0.0 |
6.9559 | 8.0 | 3176 | 13.9814 | 0.2519 | 0.3108 | 0.2773 | -1.0 | 0.2114 | 0.2722 | 0.3989 | 0.6308 | 0.6707 | -1.0 | 0.4594 | 0.719 | 0.1894 | 0.7804 | 0.5348 | 0.9077 | 0.042 | 0.2116 | 0.5718 | 0.8983 | 0.7154 | 0.8779 | 0.2398 | 0.8579 | 0.2397 | 0.5312 | 0.0347 | 0.7923 | 0.3936 | 0.7343 | 0.2106 | 0.6538 | 0.0319 | 0.7786 | 0.3276 | 0.7826 | 0.0047 | 0.4981 | 0.1981 | 0.5172 | 0.0441 | 0.2385 | 0.099 | 0.4308 | 0.0893 | 0.0078 | 0.0571 | 0.0857 | 0.0256 | 0.0783 | 0.2885 | 0.0661 | 0.0526 | 0.0 | 0.0 | 0.1923 | 0.069 | 0.0 |
6.7701 | 9.0 | 3573 | 14.2493 | 0.2282 | 0.2939 | 0.2495 | -1.0 | 0.1766 | 0.2523 | 0.367 | 0.5624 | 0.5931 | -1.0 | 0.4182 | 0.6438 | 0.151 | 0.5304 | 0.5124 | 0.8831 | 0.027 | 0.2225 | 0.5631 | 0.8835 | 0.6554 | 0.8673 | 0.2715 | 0.7456 | 0.1096 | 0.1667 | 0.0472 | 0.7423 | 0.2954 | 0.64 | 0.2526 | 0.6051 | 0.0401 | 0.7971 | 0.2058 | 0.6939 | 0.0047 | 0.4472 | 0.2381 | 0.4724 | 0.0483 | 0.2 | 0.0971 | 0.4462 | 0.0179 | 0.0 | 0.0286 | 0.0857 | 0.0513 | 0.0609 | 0.2885 | 0.0413 | 0.114 | 0.0189 | 0.0208 | 0.1923 | 0.0345 | 0.0 |
6.7179 | 10.0 | 3970 | 14.2566 | 0.2175 | 0.2801 | 0.2339 | -1.0 | 0.1861 | 0.2334 | 0.3663 | 0.5553 | 0.5854 | -1.0 | 0.329 | 0.6411 | 0.1125 | 0.4786 | 0.5197 | 0.8908 | 0.0338 | 0.2248 | 0.5831 | 0.8843 | 0.6613 | 0.8712 | 0.2557 | 0.7561 | 0.1058 | 0.1521 | 0.047 | 0.7654 | 0.2346 | 0.6286 | 0.1786 | 0.5436 | 0.0349 | 0.75 | 0.2246 | 0.6687 | 0.0052 | 0.4774 | 0.2361 | 0.4897 | 0.03 | 0.2 | 0.0903 | 0.4154 | 0.0179 | 0.0 | 0.0429 | 0.0 | 0.0256 | 0.0522 | 0.3173 | 0.0413 | 0.0877 | 0.0 | 0.0208 | 0.1923 | 0.0345 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cems-official/panels_detection_rtdetr_r100_augmented
Base model
PekingU/rtdetr_r101vd_coco_o365