panels_detection_rtdetr_r100_augmented

This model is a fine-tuned version of PekingU/rtdetr_r101vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 14.2566
  • Map: 0.2175
  • Map 50: 0.2801
  • Map 75: 0.2339
  • Map Small: -1.0
  • Map Medium: 0.1861
  • Map Large: 0.2334
  • Mar 1: 0.3663
  • Mar 10: 0.5553
  • Mar 100: 0.5854
  • Mar Small: -1.0
  • Mar Medium: 0.329
  • Mar Large: 0.6411
  • Map Radar (small): 0.1125
  • Mar 100 Radar (small): 0.4786
  • Map Ship management system (small): 0.5197
  • Mar 100 Ship management system (small): 0.8908
  • Map Radar (large): 0.0338
  • Mar 100 Radar (large): 0.2248
  • Map Ship management system (large): 0.5831
  • Mar 100 Ship management system (large): 0.8843
  • Map Ship management system (top): 0.6613
  • Mar 100 Ship management system (top): 0.8712
  • Map Ecdis (large): 0.2557
  • Mar 100 Ecdis (large): 0.7561
  • Map Visual observation (small): 0.1058
  • Mar 100 Visual observation (small): 0.1521
  • Map Ecdis (small): 0.047
  • Mar 100 Ecdis (small): 0.7654
  • Map Ship management system (table top): 0.2346
  • Mar 100 Ship management system (table top): 0.6286
  • Map Thruster control: 0.1786
  • Mar 100 Thruster control: 0.5436
  • Map Visual observation (left): 0.0349
  • Mar 100 Visual observation (left): 0.75
  • Map Visual observation (mid): 0.2246
  • Mar 100 Visual observation (mid): 0.6687
  • Map Visual observation (right): 0.0052
  • Mar 100 Visual observation (right): 0.4774
  • Map Bow thruster: 0.2361
  • Mar 100 Bow thruster: 0.4897
  • Map Me telegraph: 0.03
  • Mar 100 Me telegraph: 0.2
  • Classification Accuracy: 0.0903
  • Classification Accuracy Ship management system (small): 0.4154
  • Classification Accuracy Radar (small): 0.0179
  • Classification Accuracy Radar (large): 0.0
  • Classification Accuracy Visual observation (left): 0.0429
  • Classification Accuracy Ship management system (table top): 0.0
  • Classification Accuracy Thruster control: 0.0256
  • Classification Accuracy Visual observation (mid): 0.0522
  • Classification Accuracy Ship management system (top): 0.3173
  • Classification Accuracy Ship management system (large): 0.0413
  • Classification Accuracy Ecdis (large): 0.0877
  • Classification Accuracy Visual observation (right): 0.0
  • Classification Accuracy Visual observation (small): 0.0208
  • Classification Accuracy Me telegraph: 0.1923
  • Classification Accuracy Bow thruster: 0.0345
  • Classification Accuracy Ecdis (small): 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Radar (small) Mar 100 Radar (small) Map Ship management system (small) Mar 100 Ship management system (small) Map Radar (large) Mar 100 Radar (large) Map Ship management system (large) Mar 100 Ship management system (large) Map Ship management system (top) Mar 100 Ship management system (top) Map Ecdis (large) Mar 100 Ecdis (large) Map Visual observation (small) Mar 100 Visual observation (small) Map Ecdis (small) Mar 100 Ecdis (small) Map Ship management system (table top) Mar 100 Ship management system (table top) Map Thruster control Mar 100 Thruster control Map Visual observation (left) Mar 100 Visual observation (left) Map Visual observation (mid) Mar 100 Visual observation (mid) Map Visual observation (right) Mar 100 Visual observation (right) Map Bow thruster Mar 100 Bow thruster Map Me telegraph Mar 100 Me telegraph Classification Accuracy Classification Accuracy Ship management system (small) Classification Accuracy Radar (small) Classification Accuracy Radar (large) Classification Accuracy Visual observation (left) Classification Accuracy Ship management system (table top) Classification Accuracy Thruster control Classification Accuracy Visual observation (mid) Classification Accuracy Ship management system (top) Classification Accuracy Ship management system (large) Classification Accuracy Ecdis (large) Classification Accuracy Visual observation (right) Classification Accuracy Visual observation (small) Classification Accuracy Me telegraph Classification Accuracy Bow thruster Classification Accuracy Ecdis (small)
16.0745 1.0 397 13.3384 0.2492 0.2799 0.2692 -1.0 0.0781 0.2752 0.3739 0.5035 0.5179 -1.0 0.1764 0.5709 0.3138 0.6625 0.2582 0.7415 0.6231 0.8806 0.7174 0.8901 0.1403 0.249 0.4495 0.8561 0.2673 0.5542 0.1286 0.7385 0.0287 0.04 0.0136 0.0769 0.1199 0.8529 0.6243 0.7522 0.0525 0.3849 0.0001 0.0276 0.0002 0.0615 0.1184 0.2462 0.1786 0.155 0.2714 0.0 0.0 0.2087 0.0096 0.124 0.1053 0.0 0.0417 0.0769 0.0345 0.0
10.6194 2.0 794 12.8017 0.2353 0.2753 0.2607 -1.0 0.1056 0.2687 0.3513 0.5248 0.5727 -1.0 0.2915 0.6338 0.2765 0.6393 0.2812 0.84 0.1872 0.5465 0.7308 0.9529 0.5067 0.7327 0.1323 0.7991 0.5556 0.7979 0.0885 0.6385 0.05 0.2286 0.2309 0.4897 0.0087 0.4971 0.4676 0.727 0.0033 0.5604 0.0105 0.1138 0.0 0.0269 0.1155 0.2154 0.125 0.0155 0.0571 0.0 0.0 0.1565 0.1538 0.2397 0.1228 0.0 0.1458 0.2308 0.0 0.0769
9.3747 3.0 1191 12.9274 0.2908 0.3358 0.3161 -1.0 0.1738 0.3328 0.4501 0.6574 0.6929 -1.0 0.4422 0.7565 0.4408 0.9125 0.3984 0.9077 0.2434 0.6674 0.8443 0.9603 0.5607 0.8712 0.0519 0.4114 0.558 0.7771 0.0484 0.7231 0.2593 0.6629 0.2785 0.641 0.0305 0.79 0.5335 0.887 0.0211 0.5679 0.0923 0.4138 0.0015 0.2 0.1097 0.2769 0.3036 0.0775 0.0286 0.1143 0.0513 0.1652 0.1827 0.0496 0.0175 0.0 0.1042 0.0385 0.2414 0.0385
8.5584 4.0 1588 13.1481 0.2582 0.3237 0.2803 -1.0 0.1875 0.2811 0.3768 0.5958 0.6332 -1.0 0.4125 0.6854 0.4776 0.8018 0.2294 0.8246 0.1273 0.4101 0.6917 0.8826 0.6564 0.8154 0.0791 0.6711 0.4123 0.7333 0.0095 0.6385 0.3179 0.5829 0.2624 0.5872 0.0081 0.6571 0.37 0.8322 0.0056 0.4981 0.211 0.4138 0.0149 0.15 0.0883 0.2154 0.3393 0.0233 0.0857 0.0857 0.0513 0.0522 0.2308 0.0165 0.0614 0.0 0.0 0.0 0.1379 0.0385
8.2229 5.0 1985 12.5362 0.3526 0.4073 0.3817 -1.0 0.2086 0.3868 0.4674 0.6741 0.692 -1.0 0.4149 0.7421 0.4901 0.9089 0.6574 0.9185 0.4427 0.6527 0.7716 0.9612 0.7027 0.9 0.1775 0.6921 0.4493 0.7292 0.0325 0.7308 0.3467 0.6486 0.2225 0.6 0.0557 0.8529 0.668 0.9348 0.0062 0.3491 0.2654 0.4172 0.0002 0.0846 0.1165 0.2769 0.3214 0.031 0.0286 0.1143 0.0256 0.1913 0.2115 0.1157 0.0614 0.0 0.0 0.0769 0.1724 0.0385
7.8006 6.0 2382 13.8322 0.2236 0.2836 0.2395 -1.0 0.1455 0.246 0.3671 0.5454 0.5783 -1.0 0.347 0.6441 0.2232 0.6786 0.4449 0.8677 0.0323 0.1093 0.5672 0.8942 0.6818 0.8529 0.1653 0.693 0.1408 0.3146 0.016 0.6923 0.1955 0.5657 0.209 0.5615 0.0235 0.7143 0.3935 0.7974 0.003 0.2811 0.216 0.4207 0.0417 0.2308 0.1078 0.4 0.1071 0.0078 0.1286 0.0571 0.0513 0.1391 0.2885 0.0744 0.0439 0.0 0.0 0.0385 0.1379 0.0
7.3399 7.0 2779 14.1298 0.2021 0.2472 0.2186 -1.0 0.1629 0.2198 0.3594 0.5796 0.6109 -1.0 0.4096 0.6685 0.1335 0.7286 0.5139 0.9077 0.046 0.2574 0.5499 0.9 0.6972 0.8846 0.2344 0.7825 0.006 0.1125 0.0324 0.6731 0.1763 0.5771 0.1288 0.5487 0.0376 0.8157 0.3048 0.7809 0.0048 0.4472 0.1457 0.4586 0.0202 0.2885 0.1068 0.4923 0.0357 0.0078 0.0857 0.0286 0.0769 0.0696 0.3462 0.0496 0.0877 0.0189 0.0 0.0769 0.069 0.0
6.9559 8.0 3176 13.9814 0.2519 0.3108 0.2773 -1.0 0.2114 0.2722 0.3989 0.6308 0.6707 -1.0 0.4594 0.719 0.1894 0.7804 0.5348 0.9077 0.042 0.2116 0.5718 0.8983 0.7154 0.8779 0.2398 0.8579 0.2397 0.5312 0.0347 0.7923 0.3936 0.7343 0.2106 0.6538 0.0319 0.7786 0.3276 0.7826 0.0047 0.4981 0.1981 0.5172 0.0441 0.2385 0.099 0.4308 0.0893 0.0078 0.0571 0.0857 0.0256 0.0783 0.2885 0.0661 0.0526 0.0 0.0 0.1923 0.069 0.0
6.7701 9.0 3573 14.2493 0.2282 0.2939 0.2495 -1.0 0.1766 0.2523 0.367 0.5624 0.5931 -1.0 0.4182 0.6438 0.151 0.5304 0.5124 0.8831 0.027 0.2225 0.5631 0.8835 0.6554 0.8673 0.2715 0.7456 0.1096 0.1667 0.0472 0.7423 0.2954 0.64 0.2526 0.6051 0.0401 0.7971 0.2058 0.6939 0.0047 0.4472 0.2381 0.4724 0.0483 0.2 0.0971 0.4462 0.0179 0.0 0.0286 0.0857 0.0513 0.0609 0.2885 0.0413 0.114 0.0189 0.0208 0.1923 0.0345 0.0
6.7179 10.0 3970 14.2566 0.2175 0.2801 0.2339 -1.0 0.1861 0.2334 0.3663 0.5553 0.5854 -1.0 0.329 0.6411 0.1125 0.4786 0.5197 0.8908 0.0338 0.2248 0.5831 0.8843 0.6613 0.8712 0.2557 0.7561 0.1058 0.1521 0.047 0.7654 0.2346 0.6286 0.1786 0.5436 0.0349 0.75 0.2246 0.6687 0.0052 0.4774 0.2361 0.4897 0.03 0.2 0.0903 0.4154 0.0179 0.0 0.0429 0.0 0.0256 0.0522 0.3173 0.0413 0.0877 0.0 0.0208 0.1923 0.0345 0.0

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
9
Safetensors
Model size
76.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cems-official/panels_detection_rtdetr_r100_augmented

Finetuned
(3)
this model