Add language; replace {MODEL_NAME} with myzens/turemb_512
Browse filesHello!
This is awesome! In this PR I propose the following:
* Specify the language metadata, this allows users to find your model if they filter for Turkish models.
* Replace "{MODEL_NAME}" with "myzens/turemb_512", this should make the snippets copy-paste ready.
- Tom Aarsen
README.md
CHANGED
@@ -5,7 +5,8 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
9 |
---
|
10 |
|
11 |
# turemb_512
|
@@ -28,7 +29,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -54,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,7 +78,7 @@ print(sentence_embeddings)
|
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=
|
81 |
|
82 |
|
83 |
## Training
|
@@ -160,5 +161,4 @@ SentenceTransformer(
|
|
160 |
journal={IEEE Sinyal Isleme ve Iletisim Uygulamalar{\i} Kurultay{\i} (SIU 2016)},
|
161 |
year={2016}
|
162 |
}
|
163 |
-
```
|
164 |
-
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
language:
|
9 |
+
- tr
|
10 |
---
|
11 |
|
12 |
# turemb_512
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('myzens/turemb_512')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('myzens/turemb_512')
|
59 |
+
model = AutoModel.from_pretrained('myzens/turemb_512')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
78 |
|
79 |
<!--- Describe how your model was evaluated -->
|
80 |
|
81 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=myzens/turemb_512)
|
82 |
|
83 |
|
84 |
## Training
|
|
|
161 |
journal={IEEE Sinyal Isleme ve Iletisim Uygulamalar{\i} Kurultay{\i} (SIU 2016)},
|
162 |
year={2016}
|
163 |
}
|
164 |
+
```
|
|