See axolotl config
axolotl version: 0.9.0
base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: single_response_chem_claude_ft
output_dir: ./outputs/out/diverse_ochem_axolotl_ft
hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-single-claude
hub_strategy: every_save
# resume_from_checkpoint: ./outputs/out/5_70B_axolotl_ft/checkpoint-72
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: chat_dset_5000.jsonl
type: chat_template
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
save_safetensors: true
sequence_len: 2700
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: finetune-chem
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-single-claude
This model is a fine-tuned version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned on the chat_dset_5000.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.3050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6361 | 0.0065 | 1 | 0.6305 |
0.4135 | 0.3377 | 52 | 0.4288 |
0.364 | 0.6753 | 104 | 0.3714 |
0.327 | 1.0130 | 156 | 0.3474 |
0.3286 | 1.3506 | 208 | 0.3332 |
0.3262 | 1.6883 | 260 | 0.3241 |
0.3199 | 2.0260 | 312 | 0.3167 |
0.2838 | 2.3636 | 364 | 0.3125 |
0.2822 | 2.7013 | 416 | 0.3087 |
0.2695 | 3.0390 | 468 | 0.3064 |
0.2835 | 3.3766 | 520 | 0.3057 |
0.2502 | 3.7143 | 572 | 0.3050 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chem-claude-1-comp0-sort-pat
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct